Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. E. Scholten is active.

Publication


Featured researches published by R. E. Scholten.


Nature Nanotechnology | 2011

Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells

Liam P. McGuinness; Yan Yan; Alastair Stacey; David A. Simpson; Liam T. Hall; D. Maclaurin; Steven Prawer; Paul Mulvaney; Jörg Wrachtrup; Frank Caruso; R. E. Scholten; Lloyd C. L. Hollenberg

Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.


Science | 1993

Laser-focused atomic deposition

Jabez J. McClelland; R. E. Scholten; E C. Palm; Robert Celotta

The ability to fabricate nanometer-sized structures that are stable in air has the potential to contribute significantly to the advancement of new nanotechnologies and our understanding of nanoscale systems. Laser light can be used to control the motion of atoms on a nanoscopic scale. Chromium atoms were focused by a standing-wave laser field as they deposited onto a silicon substrate. The resulting nanostructure consisted of a series of narrow lines covering 0.4 millimeter by 1 millimeter. Atomic force microscopy measurements showed a line width of 65 � 6 nanometers, a spacing of 212.78 nanometers, and a height of 34 �+ 10 nanometers. The observed line widths and shapes are compared with the predictions of a semiclassical atom optical model.


Review of Scientific Instruments | 2001

Littrow configuration tunable external cavity diode laser with fixed direction output beam

C. J. Hawthorn; K. P. Weber; R. E. Scholten

We have developed an enhanced Littrow configuration extended cavity diode laser (ECDL) that can be tuned without changing the direction of the output beam. The output of a conventional Littrow ECDL is reflected from a plane mirror fixed parallel to the tuning diffraction grating. Using a free-space Michelson wavemeter to measure the laser wavelength, we can tune the laser over a range greater than 10 nm without any alteration of alignment.


Optics Express | 2004

X-ray phase imaging: Demonstration of extended conditions with homogeneous objects

L. D. Turner; B. B. Dhal; Jason P. Hayes; Adrian P. Mancuso; Keith A. Nugent; David Paterson; R. E. Scholten; Chanh Q. Tran; Andrew G. Peele

We discuss contrast formation in a propagating x-ray beam. We consider the validity conditions for linear relations based on the transport-of-intensity equation (TIE) and on contrast transfer functions (CTFs). From a single diffracted image, we recover the thickness of a homogeneous object which has substantial absorption and a phase-shift of --0.37 radian.


Scientific Reports | 2012

High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond

Liam T. Hall; G. C. G. Beart; Evan A. Thomas; David A. Simpson; Liam P. McGuinness; Jared H. Cole; Jonathan H. Manton; R. E. Scholten; Fedor Jelezko; Jörg Wrachtrup; Steven Petrou; Lloyd C. L. Hollenberg

A quantitative understanding of the dynamics of biological neural networks is fundamental to gaining insight into information processing in the brain. While techniques exist to measure spatial or temporal properties of these networks, it remains a significant challenge to resolve the neural dynamics with subcellular spatial resolution. In this work we consider a fundamentally new form of wide-field imaging for neuronal networks based on the nanoscale magnetic field sensing properties of optically active spins in a diamond substrate. We analyse the sensitivity of the system to the magnetic field generated by an axon transmembrane potential and confirm these predictions experimentally using electronically-generated neuron signals. By numerical simulation of the time dependent transmembrane potential of a morphologically reconstructed hippocampal CA1 pyramidal neuron, we show that the imaging system is capable of imaging planar neuron activity non-invasively at millisecond temporal resolution and micron spatial resolution over wide-fields.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe

Stefan H. E. Kaufmann; David A. Simpson; Liam T. Hall; Viktor Perunicic; Philipp Senn; Steffen Steinert; Liam P. McGuinness; B. C. Johnson; Takeshi Ohshima; Frank Caruso; Joerg Wrachtrup; R. E. Scholten; Paul Mulvaney; Lloyd C. L. Hollenberg

Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over large ensembles has remained elusive. Here, we demonstrate the detection of gadolinium spin labels in an artificial cell membrane under ambient conditions using a single-spin nanodiamond sensor. Changes in the spin relaxation time of the sensor located in the lipid bilayer were optically detected and found to be sensitive to near-individual (4 ± 2) proximal gadolinium atomic labels. The detection of such small numbers of spins in a model biological setting, with projected detection times of 1 s [corresponding to a sensitivity of ∼5 Gd spins per Hz1/2], opens a pathway for in situ nanoscale detection of dynamical processes in biology.


Optics Letters | 2006

Blue five-level frequency-upconversion system in rubidium

T. Meijer; James D. White; B. Smeets; M. Jeppesen; R. E. Scholten

We demonstrate production of continuous coherent blue laser light by using a five-level system in rubidium vapor. Two low-power lasers, at 780 and 776 nm, induce strong atomic coherence in the 5S-5P-5D states. The atoms decay to the 6P excited state, from which stimulated emission produces a coherent blue (420 nm) beam. We have coupled both ground-state hyperfine levels, effecting coherence between four levels. The coherent blue output is enhanced by several mechanisms, including stronger coupling to a larger fraction of the atomic population, operation at a detuning such that the vapor is nominally transparent to the 780 nm pump field, reduced losses owing to optical pumping, and optimal phase matching. We report experimental findings and compare them with results from a semiclassical Maxwell-Bloch model.


Optics Communications | 2002

Frequency noise characterisation of narrow linewidth diode lasers

L. D. Turner; K. P. Weber; C. J. Hawthorn; R. E. Scholten

We examine several approaches to laser frequency noise measurement in the frequency and time domains. Commonly employed methods such as optical frequency discrimination and the Allan variance are found to be complex, expensive, time-consuming, or incomplete. We describe a practical method of demodulating a laser beat note to measure a frequency noise spectrum, using a phase-locked loop frequency discriminator based on a single low-cost integrated circuit. This method measures the frequency noise spectrum of a laser directly and in detail and is insensitive to intensity fluctuations. The advantages of this scheme are demonstrated through measurement of the frequency noise spectrum for two external cavity diode lasers (ECDL), clearly distinguishing several common noise sources. These are isolated and removed, reducing the individual laser rms linewidth from 2 MHz to 450 kHz. The spectrum is used to calculate the Allan variance, which shows almost none of the important information.


American Journal of Physics | 1999

A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement

P. J. Fox; R. E. Scholten; M. R. Walkiewicz; Robert E. Drullinger

We describe the construction and operation of a simple, compact, and cost effective Michelson wavemeter with picometer accuracy. The low cost of the device means that it can form the basis of an undergraduate laboratory experiment, yet it is sufficiently reliable and accurate that it has become an important tool in our research laboratory, where it is regularly used to tune lasers to atomic transitions. The usefulness and accuracy of the wavemeter is demonstrated by tuning two separate extended cavity diode lasers to achieve two-step excitation of the Rb 52D state, observed by detecting 420 nm blue fluorescence from the 52D→62P→52S decay path.


Journal of Applied Physics | 1996

NANOSTRUCTURE FABRICATION VIA LASER-FOCUSED ATOMIC DEPOSITION (INVITED)

Robert Celotta; R Gupta; R. E. Scholten; Jabez J. McClelland

Nanostructured materials and devices will play an important role in a variety of future technologies, including magnetics. We describe a method for nanostructure fabrication based on the use of laser light to focus neutral atoms. The method uses neither a mask nor a resist, but relies on the direct deposition of atoms to form permanent structures. Since the atomic de Broglie wavelength is of picometer order, the size of structures produced is not significantly limited by diffraction, as in optical lithography. Lines as narrow as 38 nm full width at half maximum spaced by 213 nm have been produced and we have demonstrated the production of a two‐dimensional array of dots. The highly parallel process of nanostructure formation and the intrinsic accuracy of the optical wavelength that determines structure spacing suggest a number of interesting applications, including calibration standards for various types of microscopy, lithography, and micromeasurement systems. Possible magnetic applications include the production of arrays of magnetic elements, laterally structured giant magnetoresistive devices, and the patterning of magnetic media.

Collaboration


Dive into the R. E. Scholten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jabez J. McClelland

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Robert Celotta

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin Sparkes

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dene Murphy

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

S. C. Bell

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge