R. Elsner
Marshall Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Elsner.
Optical Science and Technology, SPIE's 48th Annual Meeting | 2004
Brian D. Ramsey; R. Elsner; Darell Engelhaupt; Mikhail V. Gubarev; Jeffery J. Kolodziejczak; Stephen L. O'Dell; Chet Speegle; Martin C. Weisskopf
We have developed the electroformed-nickel replication process to enable us to fabricate light-weight, high-quality mirrors for the hard-x-ray region. Two projects currently utilizing this technology are the production of 240 mirror shells, of diameters ranging from 50 to 94 mm, for our HERO balloon payload, and 150- and 230-mm-diameter shells for a prototype Constellation-X hard-x-ray telescope module. The challenge for the former is to fabricate, mount, align and fly a large number of high-resolution mirrors within the constraints of a modest budget. For the latter, the challenge is to maintain high angular resolution despite weight-budget-driven mirror shell thicknesses (100 μm) which make the shells extremely sensitive to fabrication and handling stresses, and to ensure that the replication process does not degrade the ultra-smooth surface finish (~3Å) required for eventual multilayer coatings. We present a progress report on these two programs.
Proceedings of SPIE | 2014
Steve O'Dell; T. Aldcroft; Ryan Allured; Carolyn Atkins; D. N. Burrows; Cao Jian; Brandon Chalifoux; Kai-Wing Chan; Vincenzo Cotroneo; R. Elsner; Michael E. Graham; Mikhail V. Gubarev; Ralf K. Heilmann; Raegan L. Johnson-Wilke; Kira Kilaru; Jeff Kolodziejczak; Charles F. Lillie; Stuart McMuldroch; Brian D. Ramsey; Paul B. Reid; Raul E. Riveros; Jackie Roche; Timo T. Saha; Martin C. Weisskopf; Will Zhang
The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (≈ 3 m2) and fine angular resolution (≈ 1″). Combined with the special requirements of nested grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. Achieving this goal will require precision fabrication, alignment, mounting, and assembly of large areas (≈ 600 m2) of lightweight (≈ 1 kg/m2 areal density) high-quality mirrors at an acceptable cost (≈ 1 M
Proceedings of SPIE | 2013
Mikhail V. Gubarev; Brian D. Ramsey; Steve O'Dell; R. Elsner; K. Kilaru; Jeff McCracken; M. N. Pavlinsky; A. Tkachenko; Igor Y. Lapshov; Carolyn Atkins; Vyacheslav E. Zavlin
/m2 of mirror surface area). This paper reviews relevant technological and programmatic issues, as well as possible approaches for addressing these issues—including active (in-space adjustable) alignment and figure correction.
Proceedings of SPIE | 2012
Mikhail V. Gubarev; Brian D. Ramsey; Steve O'Dell; R. Elsner; K. Kilaru; Jeff McCracken; Mikhail N. Pavlinsky; A. Tkachenko; Igor Y. Lapshov
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen Gamma Mission. Four of those modules are being fabricated under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) An additional three flight modules and one spare for the ART-XC Instrument are produced under a Cooperative Agreement between NASA and IKI. The instrument will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Each module consists of 28 nested thin Ni/Co shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of the first four modules is scheduled for November 2013, while the remaining three modules will be delivered to IKI in January 2014. We present a status of the ART x-ray module development at MSFC.
EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy and Atomic Physics | 1989
Martin C. Weisskopf; R. Elsner; R. Novick; Philip Elias Kaaret; Eric H. Silver
The Marshall Space Flight Center (MSFC) is developing x-ray mirror modules for the ART-XC instrument on board the Spectrum-Roentgen-Gamma Mission under a Reimbursable Agreement between NASA and the Russian Space Research Institute (IKI.) ART-XC will consist of seven co-aligned x-ray mirror modules with seven corresponding CdTe focal plane detectors. Currently, four of the modules are being fabricated by the Marshall Space Flight Center (MSFC.) Each MSFC module consist of 28 nested Ni/Co thin shells giving an effective area of 65 cm2 at 8 keV, response out to 30 keV, and an angular resolution of 45 arcsec or better HPD. Delivery of these modules to the IKI is scheduled for summer 2013. We present a status of the ART x-ray modules development at the MSFC.
Proceedings of SPIE | 2013
Carolyn Atkins; Brian D. Ramsey; K. Kilaru; Mikhail V. Gubarev; Steve O'Dell; R. Elsner; D. A. Swartz; Jessica A. Gaskin; Martin C. Weisskopf
A polarimeter utilizing the polarization dependence of x-ray scattering from the low Z metal Lithium will be flown on the SPECTRUM-X-Gamma missionl. The instrument will reside at the focus of one of the SODART x-ray telescopes. An important design consideration is the spurious polarization signature which occurs when unpolarized incident flux is focused a relatively small distance away from the precise axis of symmetry. In this paper we present the results of analytical and Monte-Carlo studies of this effect.
Proceedings of SPIE | 2014
Mikhail V. Gubarev; Brian D. Ramsey; R. Elsner; Steve O'Dell; Jeffrey Kolodziejczak; Jeff McCracken; Vyacheslav E. Zavlin; D. A. Swartz; K. Kilaru; Carolyn Atkins; M. N. Pavlinsky; A. Tkachenko; Igor Y. Lapshov
NASAs Marshall Space Flight Center (MSFC) has a successful history of fabricating optics for astronomical x-ray telescopes. In recent years optics have been created using electroforming replication for missions such as the balloon payload HERO (High energy replicated optics) and the rocket payload FOXSI (Focusing Optics x-ray Solar Imager). The same replication process is currently being used in the creation seven x-ray mirror modules (one module comprising of 28 nested shells) for the Russian ART-XC (Astronomical Rontgen Telescope) instrument aboard the Spectrum-Roentgen-Gamma mission and for large-diameter mirror shells for the Micro-X rocket payload. In addition to MSFCs optics fabrication, there are also several areas of research and development to create the high resolution light weight optics which are required by future x-ray telescopes. Differential deposition is one technique which aims to improve the angular resolution of lightweight optics through depositing a filler material to smooth out fabrication imperfections. Following on from proof of concept studies, two new purpose built coating chambers are being assembled to apply this deposition technique to astronomical x-ray optics. Furthermore, MSFC aims to broaden its optics fabrication through the recent acquisition of a Zeeko IRP 600 robotic polishing machine. This paper will provide a summary of the current missions and research and development being undertaken at NASAs MSFC.
Proceedings of SPIE | 2014
Mikhail V. Gubarev; Brian D. Ramsey; Jeffery J. Kolodziejczak; Steve O'Dell; R. Elsner; Vyacheslav E. Zavlin; D. A. Swartz; M. N. Pavlinsky; A. Tkachenko; Igor Y. Lapshov
The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has ~65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.
Journal of Astronomical Instrumentation | 2014
C. Wilson-Hodge; Jessica A. Gaskin; Steven Christe; Albert Y. Shih; Allyn F. Tennant; D. A. Swartz; Kiranmayee Kilaru; R. Elsner; Jeff Kolodziejczak; Brian D. Ramsey
MSFC is fabricating x-ray optics for the Astronomical Roentgen Telescope – X-Ray Concentrator (ART-XC or ART for short) instrument under agreements with the Russian Space Research Institute (IKI). ART-XC is one of two instruments that will be launched on the Russian-German Spectrum-Roentgen-Gamma (SRG) Mission to be launched in 20161. Delivery of the flight optics for ART-XC (7 mirror modules) is currently scheduled for summer/fall of 20142. MSFC has to date completed assembly of four modules and has performed extensive calibration on two of these. These calibrations show that the modules meet effective area requirements and greatly exceed the angular resolution requirements. Details of the calibration procedure and an overview of the results obtained to date are presented here.
1985 International Technical Symposium/Europe | 1986
Brian D. Ramsey; Martin C. Weisskopf; R. Elsner
On 2013 September 21–22, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope flew as a balloon payload from Ft. Sumner, NM. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 h flight. In this paper, we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources and applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray Light Facility (SLF) in Huntsville, AL, and using ray traces. We describe the application of our calibration measurements to in-flight observations of the Crab Nebula.