Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. G. Amachawadi is active.

Publication


Featured researches published by R. G. Amachawadi.


Applied and Environmental Microbiology | 2011

Selection of Fecal Enterococci Exhibiting tcrB-Mediated Copper Resistance in Pigs Fed Diets Supplemented with Copper

R. G. Amachawadi; N. W. Shelton; X. Shi; Javier Vinasco; Steven S. Dritz; Michael D. Tokach; Jim L. Nelssen; H.M. Scott; T. G. Nagaraja

ABSTRACT Copper, as copper sulfate, is increasingly used as an alternative to in-feed antibiotics for growth promotion in weaned piglets. Acquired copper resistance, conferred by a plasmid-borne, transferable copper resistance (tcrB) gene, has been reported in Enterococcus faecium and E. faecalis. A longitudinal field study was undertaken to determine the relationship between copper supplementation and the prevalence of tcrB-positive enterococci in piglets. The study was done with weaned piglets, housed in 10 pens with 6 piglets per pen, fed diets supplemented with a normal (16.5 ppm; control) or an elevated (125 ppm) level of copper. Fecal samples were randomly collected from three piglets per pen on days 0, 14, 28, and 42 and plated on M-Enterococcus agar, and three enterococcal isolates were obtained from each sample. The overall prevalence of tcrB-positive enterococci was 21.1% (38/180) in piglets fed elevated copper and 2.8% (5/180) in the control. Among the 43 tcrB-positive isolates, 35 were E. faecium and 8 were E. faecalis. The mean MICs of copper for tcrB-negative and tcrB-positive enterococci were 6.2 and 22.2 mM, respectively. The restriction digestion of the genomic DNA of E. faecium or E. faecalis with S1 nuclease yielded a band of ∼194-kbp size to which both tcrB and the erm(B) gene probes hybridized. A conjugation assay demonstrated cotransfer of tcrB and erm(B) genes between E. faecium and E. faecalis strains. The higher prevalence of tcrB-positive enterococci in piglets fed elevated copper compared to that in piglets fed normal copper suggests that supplementation of copper in swine diets selected for resistance.


Applied and Environmental Microbiology | 2013

Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets.

R. G. Amachawadi; H.M. Scott; C. A. Alvarado; T. R. Mainini; Javier Vinasco; James S. Drouillard; T. G. Nagaraja

Copper, an essential micronutrient, is supplemented in the diet at elevated levels to reduce morbidity and mortality and to promote growth in feedlot cattle. Gut bacteria exposed to copper can acquire resistance, which among enterococci is conferred by a transferable copper resistance gene (tcrB) borne on a plasmid. The present study was undertaken to investigate whether the feeding of copper at levels sufficient to promote growth increases the prevalence of the tcrB gene among the fecal enterococci of feedlot cattle. The study was performed with 261 crossbred yearling heifers housed in 24 pens, with pens assigned randomly to a 2�2 factorial arrangement of treatments consisting of dietary copper and a commercial linseed meal-based energy protein supplement. A total of 22 isolates, each identified as Enterococcus faecium, were positive for tcrB with an overall prevalence of 3.8% (22/576). The prevalence was higher among the cattle fed diets supplemented with copper (6.9%) compared to normal copper levels (0.7%). The tcrB-positive isolates always contained both erm(B) and tet(M) genes. Median copper MICs for tcrB-positive and tcrB-negative enterococci were 22 and 4 mM, respectively. The transferability of the tcrB gene was demonstrated via a filter-mating assay. Multilocus variable number tandem repeat analysis revealed a genetically diverse population of enterococci. The finding of a strong association between the copper resistance gene and other antibiotic (tetracycline and tylosin) resistance determinants is significant because enterococci remain potential pathogens and have the propensity to transfer resistance genes to other bacteria in the gut.


Foodborne Pathogens and Disease | 2010

Effects of feeding elevated concentrations of copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle.

Megan E. Jacob; J. Trent Fox; T. G. Nagaraja; James S. Drouillard; R. G. Amachawadi; Sanjeev Narayanan

Cattle are fed elevated concentrations of copper and zinc for growth promotion. The potential mechanisms of growth promotional effects of these elements are attributed to their antimicrobial activities, similar to that of antibiotics, in that gut microbial flora are altered to reduce fermentation loss of nutrients and to suppress gut pathogens. Copper and zinc fed at elevated concentrations may select for bacteria that are resistant not only to heavy metals but also to antibiotics. Our objectives were to determine the effects of feeding elevated copper and zinc on the antimicrobial susceptibilities of fecal bacteria in feedlot cattle. Twenty heifers, fed corn-based high-grain diets, were randomly assigned to treatments in a 2 x 2 factorial arrangement with 1X or 10X National Research Council recommended copper and/or zinc. Feces, collected on days 0, 14, and 32, were cultured for commensal bacteria (Escherichia coli and Enterococcus) to determine their susceptibilities to copper, zinc, and antibiotics. Fecal DNA was extracted to detect tcrB gene and quantify erm(B) and tet(M) genes. In E. coli and Enterococcus sp., minimal differences in minimum inhibitory concentrations (MICs) of copper, zinc, and antibiotics were noticed. The mean copper MIC for E. coli increased (p < 0.05) between days 0 and 32 and days 14 and 32. The only treatment effect detected was increased zinc MIC of E. coli isolates (p < 0.01). The tcrB gene was not detected in feces or in enterococcal isolates. Proportions of erm(B) and tet(M) were unaffected by copper or zinc supplementation. However, the proportion of tet(M) increased (p < 0.05) between days 0 and 14. Feeding elevated copper and/or zinc to feedlot cattle had marginal effects on antimicrobial susceptibilities of fecal E. coli and enterococci.


Preventive Veterinary Medicine | 2014

Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs

Getahun E. Agga; H.M. Scott; R. G. Amachawadi; T. G. Nagaraja; Javier Vinasco; Jianfa Bai; Bo Norby; David G. Renter; Steven S. Dritz; Jim L. Nelssen; Michael D. Tokach

Feed-grade chlortetracycline (CTC) and copper are both widely utilized in U.S. pig production. Cluster randomized experiment was conducted to evaluate the effects of CTC and copper supplementation in weaned pigs on antimicrobial resistance (AMR) among fecal Escherichia coli. Four treatment groups: control, copper, CTC, or copper plus CTC were randomly allocated to 32 pens with five pigs per pen. Fecal samples were collected weekly from three pigs per pen for six weeks. Two E. coli isolates per fecal sample were tested for phenotypic and genotypic resistance against antibiotics and copper. Data were analyzed with multilevel mixed effects logistic regression, multivariate probit analysis and discrete time survival analysis. CTC-supplementation was significantly (99% [95% CI=98-100%]) associated with increased tetracycline resistance compared to the control group (95% [95% CI=94-97%]). Copper supplementation was associated with decreased resistance to most of the antibiotics tested, including cephalosporins, over the treatment period. Overall, 91% of the E. coli isolates were multidrug resistant (MDR) (resistant to ≥3 antimicrobial classes). tetA and blaCMY-2 genes were positively associated (P<0.05) with MDR categorization, while tetB and pcoD were negatively associated with MDR. tetA and blaCMY-2 were positively associated with each other and in turn, these were negatively associated with both tetB and pcoD genes; which were also positively associated with one another. Copper minimum inhibitory concentration was not affected by copper supplementation or by pcoD gene carriage. CTC supplementation was significantly associated with increased susceptibilities of E. coli to copper (HR=7 [95% CI=2.5-19.5]) during treatment period. In conclusion, E. coli isolates from the nursery pigs exhibited high levels of antibiotic resistance, with diverse multi-resistant phenotypic profiles. The roles of copper supplementation in pig production, and pco-mediated copper resistance among E. coli in particular, need to be further explored since a strong negative association of pco with both tetA and blaCMY-2 points to opportunities for selecting a more innocuous resistance profile.


Foodborne Pathogens and Disease | 2010

Occurrence of tcrB, a Transferable Copper Resistance Gene, in Fecal Enterococci of Swine

R. G. Amachawadi; Nick W. Shelton; Megan E. Jacob; X. Shi; Sanjeev Narayanan; Ludek Zurek; Steven S. Dritz; Jim L. Nelssen; Michael D. Tokach; T. G. Nagaraja

High concentration of copper, fed as copper sulfate, is often used to increase growth rates in swine. Bacteria exposed to copper may acquire resistance, and in Enterococcus faecium and Enterococcus faecalis, a plasmid-borne transferable copper resistance (tcrB) gene that confers copper resistance has been reported. Our objectives were to determine the occurrence of tcrB in fecal enterococci from weaned piglets fed diets with a normal supplemental level (16.5 ppm) or an elevated supplemental level (125 ppm) of copper and to determine the association of tcrB with copper, erythromycin, and vancomycin resistance. A total of 323 enterococcal isolates were examined and 15 (4.6%) isolates (14 E. faecium and 1 E. faecalis) were positive for tcrB. Fifteen tcrB-positive and 15 randomly chosen tcrB-negative isolates from piglets fed the normal supplemental level of copper were tested for erm(B), tet(M), vanA, and vanB genes and susceptibilities to copper, erythromycin, tetracyclines, and vancomycin. All tcrB-positive and -negative isolates contained erm(B) and tet(M), but not vanA and vanB. The mean minimum inhibitory concentration of copper for tcrB-positive (21.1 mM) was higher (p < 0.001) compared with tcrB-negative isolates (6.1 mM). All isolates were resistant to erythromycin and tetracyclines and susceptible to vancomycin. The transferability of the tcrB gene from tcrB-positive strains to tcrB-negative strains was demonstrated by conjugation. The potential link between tcrB and antibiotic resistance genes and the propensity of enterococci to transfer tcrB to other strains raises the possibility that copper supplementation may exert selection pressure for antibiotic-resistant enterococci. This study is the first report on the occurrence of the tcrB gene in enterococci isolated from swine in the United States.


Preventive Veterinary Medicine | 2015

Effects of chlortetracycline and copper supplementation on the prevalence, distribution, and quantity of antimicrobial resistance genes in the fecal metagenome of weaned pigs

Getahun E. Agga; H. Morgan Scott; Javier Vinasco; T. G. Nagaraja; R. G. Amachawadi; Jianfa Bai; Bo Norby; David G. Renter; Steven S. Dritz; Jim L. Nelssen; Michael D. Tokach

Use of in-feed antibiotics such as chlortetracycline (CTC) in food animals is fiercely debated as a cause of antimicrobial resistance in human pathogens; as a result, alternatives to antibiotics such as heavy metals have been proposed. We used a total community DNA approach to experimentally investigate the effects of CTC and copper supplementation on the presence and quantity of antimicrobial resistance elements in the gut microbial ecology of pigs. Total community DNA was extracted from 569 fecal samples collected weekly over a 6-week period from groups of 5 pigs housed in 32 pens that were randomized to receive either control, CTC, copper, or copper plus CTC regimens. Qualitative and quantitative PCR were used to detect the presence of 14 tetracycline resistance (tet) genes and to quantify gene copies of tetA, tetB, blaCMY-2 (a 3rd generation cephalosporin resistance gene), and pcoD (a copper resistance gene), respectively. The detection of tetA and tetB decreased over the subsequent sampling periods, whereas the prevalence of tetC and tetP increased. CTC and copper plus CTC supplementation increased both the prevalence and gene copy numbers of tetA, while decreasing both the prevalence and gene copies of tetB. In summary, tet gene presence was initially very diverse in the gut bacterial community of weaned pigs; thereafter, copper and CTC supplementation differentially impacted the prevalence and quantity of the various tetracycline, ceftiofur and copper resistance genes resulting in a less diverse gene population.


Foodborne Pathogens and Disease | 2015

Effects of In-Feed Copper, Chlortetracycline, and Tylosin on the Prevalence of Transferable Copper Resistance Gene, tcrB, Among Fecal Enterococci of Weaned Piglets

R. G. Amachawadi; Scott Hm; Javier Vinasco; Tokach; Steven S. Dritz; Jim L. Nelssen; T. G. Nagaraja

Heavy metals, such as copper, are increasingly supplemented in swine diets as an alternative to antibiotics to promote growth. Enterococci, a common gut commensal, acquire plasmid-borne, transferable copper resistance (tcrB) gene-mediated resistance to copper. The plasmid also carried resistance genes to tetracyclines and macrolides. The potential genetic link between copper and antibiotic resistance suggests that copper supplementation may exert a selection pressure for antimicrobial resistance. Therefore, a longitudinal study was conducted to investigate the effects of in-feed copper, chlortetracycline, and tylosin alone or in combination on the selection and co-selection of antimicrobial-resistant enterococci. The study included 240 weaned piglets assigned randomly to 6 dietary treatment groups: control, copper, chlortetracycline, tylosin, copper and chlortetracycline, and copper and tylosin. Feces were collected before (day 0), during (days 7, 14, 21), and after (days 28 and 35) initiating treatment, and enterococcal isolates were obtained from each fecal sample and tested for genotypic and phenotypic resistance to copper and antibiotics. A total of 2592 enterococcal isolates were tested for tcrB by polymerase chain reaction. The overall prevalence of tcrB-positive enterococci was 14.3% (372/2592). Among the tcrB-positive isolates, 331 were Enterococcus faecium and 41 were E. faecalis. All tcrB-positive isolates contained both erm(B) and tet(M) genes. The median minimum inhibitory concentration of copper for tcrB-negative and tcrB-positive enterococci was 6 and 18 mM, respectively. The majority of isolates (95/100) were resistant to multiple antibiotics. In conclusion, supplementing copper or antibiotics alone did not increase copper-resistant enterococci; however, supplementing antibiotics with copper increased the prevalence of the tcrB gene among fecal enterococci of piglets.


Journal of Applied Microbiology | 2015

Effects of in‐feed copper and tylosin supplementations on copper and antimicrobial resistance in faecal enterococci of feedlot cattle

R. G. Amachawadi; Scott Hm; C. Aperce; Javier Vinasco; James S. Drouillard; T. G. Nagaraja

The objective was to investigate whether in‐feed supplementation of copper, at elevated level, co‐selects for macrolide resistance in faecal enterococci.


Kansas Agricultural Experiment Station Research Reports | 2009

Effects of copper sulfate, zinc oxide, and neoterramycin on weanling pig growth and antibiotic resistance rate for fecal Escherichia coli.

N.W. Shelton; Megan E. Jacob; Michael D. Tokach; Joel M. DeRouchey; R. G. Amachawadi; X. Shi; T. G. Nagaraja; Jim L. Nelssen; Robert D. Goodband; Steven S. Dritz

A total of 180 weanling pigs (PIC TR4 ×1050, initially 11.1 lb and 21 d of age) were used in a 42-d growth trial to compare the effects of supplemental zinc, copper, and in-feed antimicrobial on weanling pig growth and antibiotic resistance of fecal Escherichia coli. There were 5 dietary treatments with 6 pens per treatment and 5 pigs per pen. Pens were assigned to dietary treatments in a randomized complete block design. Treatments were arranged in a 2 × 2 factorial design with main effects of copper sulfate (0 or 125 ppm) and zinc oxide (0 or 3,000 ppm for 14 d and 0 or 2,000 for 28 d). The fifth treatment was in-feed antimicrobial (50 g/ton neomycin sulfate and 50 g/ton oxytetracycline HCl). All diets were supplemented with165 ppm zinc and 16.5 ppm copper from the trace mineral premix. Fecal samples were collected from 3 pigs per pen on d 14 and 42 to determine total coliform and E. coli counts as well as E. coli antibiotic resistance rates.


PLOS ONE | 2016

Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

Zachary DeMars; Silpak Biswas; R. G. Amachawadi; David G. Renter; Victoriya V. Volkova

Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment suggested that during first days in anaerobic conditions the susceptibility changes with time. The results demonstrate that assessing effects of antimicrobial treatments on resistance in the host’s enteric bacteria that are Gram negative facultative Anaerobe Bacilli requires data on the bacterial antimicrobial susceptibility in the conditions resembling those in the intestine.

Collaboration


Dive into the R. G. Amachawadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H.M. Scott

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge