R. Garrido
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Garrido.
Science | 2008
Eric Michel; A. Baglin; Michel Auvergne; C. Catala; R. Samadi; F. Baudin; T. Appourchaux; C. Barban; W. W. Weiss; G. Berthomieu; Patrick Boumier; Marc-Antoine Dupret; R. A. García; M. Fridlund; R. Garrido; M. J. Goupil; Hans Kjeldsen; Y. Lebreton; Benoit Mosser; A. Grotsch-Noels; E. Janot-Pacheco; J. Provost; Ian W. Roxburgh; Anne Thoul; Thierry Toutain; Didier Tiphène; Sylvaine Turck-Chieze; Sylvie Vauclair; G. Vauclair; Conny Aerts
Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.
Astronomy and Astrophysics | 2002
Ulrike Heiter; F. Kupka; C. van 't Veer-Menneret; C. Barban; W. W. Weiss; Marie-José Goupil; Wolfram Schmidt; D. Katz; R. Garrido
Received ; accepted Abstract. We present several new sets of grids of model stellar atmospheres computed with modified versions of the ATLAS9 code. Each individual set consists of several grids of models with different metallicities ranging from (M/H) = 2.0 to +1.0 dex. The grids range from 4000 to 10000 K in Teff and from 2.0 to 5.0 dex in log g. The individual sets differ from each other and from previous ones essentially in the physics used for the treatment of the convective energy transport, in the higher vertical resolution of the atmospheres and in a finer grid in the (Teff, log g) plane. These improvements enable the computation of derivatives of color indices accurate enough for pulsation mode identification. In addition, we show that the chosen vertical resolution is necessary and sufficient for the purpose of stellar interior modelling.To explain the physical differences between the model grids we provide a description of the currently available modifications of ATLAS9 according to their treatment of convection. Our critical analysis of the dependence of the atmospheric structure and observable quantities on convection treatment, vertical resolution and metallicity reveals that spectroscopic and photometric observations are best represented when using an inefficient convection treatment. This conclusion holds whatever convection formulation investigated here is used, i.e. MLT(� = 0.5), CM and CGM are equivalent. We also find that changing the convection treatment can lead to a change in the effective temperature estimated from Stromgren color indices from 200 to 400 K.
Monthly Notices of the Royal Astronomical Society | 2004
G. Handler; R. R. Shobbrook; M. Jerzykiewicz; K. Krisciunas; T. Tshenye; E. Rodríguez; V. Costa; A.-Y. Zhou; Rodney Thebe Medupe; W. M. Phorah; R. Garrido; P. J. Amado; M. Paparó; D. Zsuffa; L. Ramokgali; R. Crowe; N. Purves; R. Avila; R. Knight; E. Brassfield; P. M. Kilmartin; P. L. Cottrell
Asteroseismology of the β Cephei star ν Eridani : II. Spectroscopic observations and pulsational frequency analysis
Astronomy and Astrophysics | 2009
J. Debosscher; L. M. Sarro; M. López; M. Deleuil; Conny Aerts; Michel Auvergne; A. Baglin; F. Baudin; M. Chadid; S. Charpinet; J. Cuypers; J. De Ridder; R. Garrido; A.-M. Hubert; E. Janot-Pacheco; L. Jorda; A. Kaiser; T. Kallinger; Z. Kollath; C. Maceroni; P. Mathias; E. Michel; Claire Moutou; Coralie Neiner; M. Ollivier; R. Samadi; E. Solano; Christian Surace; B. Vandenbussche; W. W. Weiss
Context: Aims: In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation. Methods: The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its application to the OGLE database. Here, we present the modifications of the algorithms and of the training set to optimize the performance when applied to the CoRoT data. Results: Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly available. The CoRoT space mission, launched on 27 December 2006, has been developed and is operated by the CNES, with the contribution of Austria, Belgium, Brazil , ESA, Germany, and Spain. The full classification results will be only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/506/519
Monthly Notices of the Royal Astronomical Society | 2006
G. Handler; M. Jerzykiewicz; E. Rodríguez; K. Uytterhoeven; P. J. Amado; T. N. Dorokhova; N. I. Dorokhov; E. Poretti; J. P. Sareyan; L. Parrao; D. Lorenz; D. Zsuffa; R. Drummond; J. Daszyńska-Daszkiewicz; T. Verhoelst; J. De Ridder; B. Acke; P.-O. Bourge; A. I. Movchan; R. Garrido; M. Paparó; T. Sahin; V. Antoci; S. N. Udovichenko; K. Csorba; R. Crowe; B. Berkey; S. Stewart; D. Terry; David E. Mkrtichian
We report a multisite photometric campaign for the β Cephei star 12 Lacertae. 750 hours of high-quality differential photoelectric Strömgren, Johnson and Geneva timeseries photometry were obtained with 9 telescopes during 190 nights. Our frequency analysis results in the detection of 23 sinusoidal signals in the light curves. Eleven of those correspond to independent pulsation modes, and the remainder are combination frequencies. We find some slow aperiodic variability such as that seemingly present in several β Cephei stars. We perform mode identification from our colour photometry, derive the spherical degree l for the five strongest modes unambiguously and provide constraints on l for the weaker modes. We find a mixture of modes of 0 6 l 6 4. In particular, we prove that the previously suspected rotationally split triplet within the modes of 12 Lac consists of modes of different l; their equal frequency splitting must thus be accidental. One of the periodic signals we detected in the light curves is argued to be a linearly stable mode excited to visible amplitude by nonlinear mode coupling via a 2:1 resonance. We also find a low-frequency signal in the light variations whose physical nature is unclear; it could be a parent or daughter mode resonantly coupled. The remaining combination frequencies are consistent with simple light-curve distortions. The range of excited pulsation frequencies of 12 Lac may be sufficiently large that it cannot be reproduced by standard models. We suspect that the star has a larger metal abundance in the pulsational driving zone, a hypothesis also capable of explaining the presence of Cephei stars in the LMC.
Astronomy and Astrophysics | 2009
A. García Hernández; A. Moya; Eric Michel; R. Garrido; J. C. Suárez; E. Rodríguez; P. J. Amado; S. Martin-Ruiz; A. Rolland; E. Poretti; R. Samadi; A. Baglin; M. Auvergne; C. Catala; L. Lefèvre; F. Baudin
We present an analysis of the \delta-Scuti star object HD 174936 (ID 7613) observed by CoRoT during the first short run SRc01 (27 days). A total number of 422 frequencies we are extracted from the light curve using standard prewhitening techniques. This number of frequencies was obtained by considering a spectral significance limit of sig = 10 using the software package SigSpec. Our analysis of the oscillation frequency spectrum reveals a spacing periodicity of around 52 \muHz. Although modes considered here are not in the asymptotic regime, a comparison with stellar models confirms that this signature may stem from a quasi-periodic pattern similar to the so-called large separation in solar-like stars.
Astronomy and Astrophysics | 2004
A. Moya; R. Garrido; Marc-Antoine Dupret
Phase differences and amplitude ratios at different colour photometric bands are currently being used to discriminate pulsation modes to facilitate mode identification of κ-driven non-radial pulsating stars. In addition to physical inputs (e.g., mass, Teff, etc.), these quantities depend on the non-adiabatic treatment of the atmosphere. This paper presents theoretical results concerning δ Scuti pulsating stars. The envelope of each of these stellar structures possesses a convection zone whose development is determined by various factors. An interacting pulsation-atmosphere physical treatment is introduced which supplies two basic non-adiabatic physical quantities: the relative effective temperature variation and the phase lag φ T ,d ef ined as the angle between effective temperature variation and radial displacement. These quantities can be used to derive the phase differences and amplitude ratios. Numerical values for these quantities depend critically on the α MLT parameter used to calculate the convection in the envelope. The dependence on α was analyzed and it was found that the use of colour observations may be of considerable importance in testing the MLT. Finally, examples are given of how α introduces uncertainties in the theoretical predictions regarding phases and amplitudes of photometric variations in δ Scuti pulsating stars.
Proceedings of SPIE | 2010
A. Quirrenbach; P. J. Amado; H. Mandel; J. A. Caballero; Reinhard Mundt; Ignasi Ribas; Ansgar Reiners; Miguel Abril; J. Aceituno; Cristina Afonso; D. Barrado y Navascués; Jacob L. Bean; V. J. S. Béjar; S. Becerril; A. Böhm; Manuel Cárdenas; Antonio Claret; J. Colomé; Luis P. Costillo; S. Dreizler; Matilde Fernández; Xavier Francisco; D. Galadí; R. Garrido; J. I. González Hernández; J. Guàrdia; Eike W. Guenther; F. Gutiérrez-Soto; Viki Joergens; A. Hatzes
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing a simultaneous ThAr calibration.
Astronomy and Astrophysics | 2004
Ph. Mathias; J.-M. Le Contel; E. Chapellier; S. Jankov; J.-P. Sareyan; E. Poretti; R. Garrido; E. Rodríguez; A. Arellano Ferro; M. Alvarez; L. Parrao; J. H. Pena; Laurent Eyer; Conny Aerts; P. De Cat; W. W. Weiss; Allison Zhou
We present the first results of a 2-year high-resolution spectroscopy campaign of 59 candidate γ Doradus stars which were mainly discovered from the HIPPARCOS astrometric mission. More than 60% of the stars present line profile variations which can be interpreted as due to pulsation related to γ Doradus stars. For all stars we also derived the projected rotation velocity (up to more than 200 km s −1 ). The amplitude ratios 2K/∆m for the main HIPPARCOS frequency are in the range 35−96 km s −1 mag −1 . About 50% of the candidates are possible members of binary systems, with 20 stars being confirmed γ Doradus. At least 6 stars present composite spectra, and in all but one case (for which only one spectrum could be obtained), the narrow component shows line profile variations, pointing towards an uncomfortable situation if this narrow component orig- inates from a shell surrounding the star. This paper is the first of a series concerning mode identification using both photometric and spectroscopic methods for the confirmed γ Doradus stars of the present sample.
Astronomy and Astrophysics | 2008
Katrien Uytterhoeven; P. Mathias; E. Poretti; Monica Rainer; S. Martín-Ruiz; Eugenio Rodriguez; P. J. Amado; D. Le Contel; S. Jankov; E. Niemczura; K. R. Pollard; E. Brunsden; M. Paparó; V. Costa; J.-C. Valtier; R. Garrido; J. C. Suárez; P. M. Kilmartin; E. Chapellier; C. Rodríguez-López; A. J. Marin; F. J. Aceituno; V. Casanova; A. Rolland; Ignacio E. Olivares
Context. We present an extensive ground-based photometric and spectroscopic campaign of the γ Dor CoRoT target HD 49434. This campaign was a preparatory step of the CoRoT satellite observations, which occurred between October 2007 and March 2008. Aims. With satellite data, detection of low-degree pulsation modes only is achievable, and, as no filters are available, with poor identification. Ground-based data promise eventually to identify additional modes and provide extra input for the identification: spectroscopic data allows the detection of high-degree modes and an estimate of the azimuthal number m. We attempt to detect and identify as many pulsation modes as possible from the ground-based dataset of the γ Dor star HD 49434, and anticipate the CoRoT results. Methods. We searched for frequencies in the multi-colour variations, the pixel-to-pixel variations across the line profiles, and the moments variations in a large dataset, consisting of both multi-colour photometric and spectroscopic data from different observatories, using different frequency analysis methods. We performed a tentative mode identification of the spectroscopic frequencies using the Moment Method and the Intensity Period Search Method. We also completed an abundance analysis. Results. The frequency analysis clearly indicates the presence of four frequencies in the 0.2−1.7 d −1 interval, as well as six frequencies in the 5−12 d −1 domain. The low frequencies are typical of γ Dor variables, while the high frequencies are common to δ Sct pulsators. We propose that the frequency 2.666 d −1 is the rotational frequency. All modes, for which an identification was possible, appear to be high-degree modes (3 ≤ � ≤ 8). We did not find evidence for a possible binary nature of the star HD 49434. The element abundances that we derived are consistent with values obtained in previous analyses. Conclusions. We classify the γ Dor star HD 49434 as a hybrid pulsator, which pulsates simultaneously in p -a ndg-modes. This implies that HD 49434 is an extremely interesting target for asteroseismic modelling.