Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Gáspár is active.

Publication


Featured researches published by R. Gáspár.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes

Gyorgy Panyi; M. Bagdány; Andrea Bodnár; György Vámosi; Gergely Szentesi; Attila Jenei; László Mátyus; Sándor Varga; Thomas A. Waldmann; R. Gáspár; Sándor Damjanovich

Distribution and lateral organization of Kv1.3 potassium channels and CD3 molecules were studied by using electron microscopy, confocal laser scanning microscopy, and fluorescence resonance energy transfer. Immunogold labeling and electron microscopy showed that the distribution of FLAG epitope-tagged Kv1.3 channels (Kv1.3/FLAG) significantly differs from the stochastic Poisson distribution in the plasma membrane of human T lymphoma cells. Confocal laser scanning microscopy images showed that Kv1.3/FLAG channels and CD3 molecules accumulated in largely overlapping membrane areas. The numerical analysis of crosscorrelation of the spatial intensity distributions yielded a high correlation coefficient (C = 0.64). A different hierarchical level of molecular proximity between Kv1.3/FLAG and CD3 proteins was reported by a high fluorescence resonance energy transfer efficiency (E = 51%). These findings implicate that reciprocal regulation of ion-channel activity, membrane potential, and the function of receptor complexes may contribute to the proper functioning of the immunological synapse.


Current Pharmaceutical Design | 2006

K+ channel blockers: Novel tools to inhibit T cell activation leading to specific immunosuppression

Gyorgy Panyi; Lourival D. Possani; R.C. R. de la Vega; R. Gáspár; Zoltán Varga

During the last two decades since the identification and characterization of T cell potassium channels great advances have been made in the understanding of the role of these channels in T cell functions, especially in antigen-induced activation. Their limited tissue distribution and the recent discovery that different T cell subtypes carrying out distinct immune functions show specific expression levels of these channels have made T cell potassium channels attractive targets for immunomodulatory drugs. Many toxins of various animal species and a structurally diverse array of small molecules inhibiting these channels with varying affinity and selectivity were found and their successful use in immunosuppression in vivo was also demonstrated. Better understanding of the topological differences between potassium channel pores, detailed knowledge of toxin and small-molecule structures and the identification of the binding sites of blocking compounds make it possible to improve the selectivity and affinity of the lead compounds by introducing modifications based on structural information. In this review the basic properties and physiological roles of the voltage-gated Kv1.3 and the Ca2+-activated IKCa1 potassium channels are discussed along with an overview of compounds inhibiting these channels and approaches aiming at producing more efficient modulators of immune functions for the treatment of diseases like sclerosis multiplex and type I diabetes.


Biochimica et Biophysica Acta | 2002

Two novel toxins from the Amazonian scorpion Tityus cambridgei that block Kv1.3 and Shaker B K+-channels with distinctly different affinities

Cesar V.F. Batista; Froylan Gómez-Lagunas; Ricardo C. Rodríguez de la Vega; Péter Hajdu; Gyorgy Panyi; R. Gáspár; Lourival D. Possani

Two novel toxic peptides (Tc30 and Tc32) were isolated and characterized from the venom of the Brazilian scorpion Tityus cambridgei. The first have 37 and the second 35 amino acid residues, with molecular masses of 3,871.8 and 3,521.5, respectively. Both contain three disulfide bridges but share only 27% identity. They are relatively potent inhibitors of K(+)-currents in human T lymphocytes with K(d) values of 10 nM for Tc32 and 16 nM for Tc30, but they are less potent or quite poor blockers of Shaker B K(+)-channels, with respective K(d) values of 74 nM and 4.7 microM. Tc30 has a lysine in position 27 and a tyrosine at position 36 identical to those of charybdotoxin. These two positions conform the dyad considered essential for activity. On the contrary, Tc32 has a serine in the position equivalent to lysine 27 of charybdotoxin and does not contain any aromatic amino acid. Due to its unique primary sequence and to its distinctive preference for K(+)-channels of T lymphocytes, it was classified as the first example of a new subfamily of K(+)-channel-specific peptides (alpha-KT x 18.1). Tc30 is a member of the Tityus toxin II-9 subfamily and was given the number alpha-KT x 4.4.


Aquaculture | 1995

Potassium channels regulate hypo-osmotic shock-induced motility of common carp (Cyprinus carpio) sperm

Zoltán Krasznai; Teréz Márián; László Balkay; R. Gáspár; Lajos Trón

Abstract The osmolality and composition of fish seminal plasma usually suppress sperm motility in the testis and sperm duct. Change in the osmolality of the environment at spawning activates flagellar motion of the sperm tail. The effect of inhibitors of anion and cation channels on active motion was investigated by a microscopic motility test. While sodium channel inhibitors (amiloride and tetrodotoxin) as well as anion channel inhibitors (DIDS and ethacrynic acid) did not affect motility, potassium channel inhibitors (4-AP, quinine, veratrine, verapamil) decreased the duration of flagellar motion or abolished motility completely. Potassium channel inhibitors exerted an effect on sperm motility depending on the dose and length of incubation. The voltage-activated K+ blocker 4-aminopiridine proved to be the most potent inhibitor. Its effect was completely reversible, indicating that the functional state of potassium channels is essential to the activation mechanism of sperm. Intracellular pH of the spermatozoa was measured by a fluorescent flow cytometric technique. Hypo-osmotic shock induced intracellular alkalinization of carp sperm. Increase in pHi was 0.15 pH units. In the presence of 4-AP the measured amplitude and kinetics of the pHi change was the same as in the absence of this inhibitor, arguing against a regulatory role of intracellular pH change.


Molecular Pharmacology | 2012

Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells.

Zoltán Varga; Georgina Gurrola-Briones; Ferenc Papp; Ricardo C. Rodríguez de la Vega; Gustavo Pedraza-Alva; Rajeev B. Tajhya; R. Gáspár; Luis Cárdenas; Yvonne Rosenstein; Christine Beeton; Lourival D. Possani; Gyorgy Panyi

Blockade of Kv1.3 K+ channels in T cells is a promising therapeutic approach for the treatment of autoimmune diseases such as multiple sclerosis and type 1 diabetes mellitus. Vm24 (α-KTx 23.1) is a novel 36-residue Kv1.3-specific peptide isolated from the venom of the scorpion Vaejovis mexicanus smithi. Vm24 inhibits Kv1.3 channels of human lymphocytes with high affinity (Kd = 2.9 pM) and exhibits >1500-fold selectivity over other ion channels assayed. It inhibits the proliferation and Ca2+ signaling of human T cells in vitro and reduces delayed-type hypersensitivity reactions in rats in vivo. Our results indicate that Vm24 has exceptional pharmacological properties that make it an excellent candidate for treatment of certain autoimmune diseases.


Journal of Immunology | 2009

Developmental Switch of the Expression of Ion Channels in Human Dendritic Cells

Emese Zsiros; Katalin Kis-Toth; Péter Hajdu; R. Gáspár; Joanna Bielanska; Antonio Felipe; Éva Rajnavölgyi; Gyorgy Panyi

Modulation of the expression and activity of plasma membrane ion channels is one of the mechanisms by which immune cells can regulate their intracellular Ca2+ signaling pathways required for proliferation and/or differentiation. Voltage-gated K+ channels, inwardly rectifying K+ channels, and Ca2+-activated K+ channels have been described to play a major role in controlling the membrane potential in lymphocytes and professional APCs, such as monocytes, macrophages, and dendritic cells (DCs). Our study aimed at the characterization and identification of ion channels expressed in the course of human DC differentiation from monocytes. We report in this study for the first time that immature monocyte-derived DCs express voltage-gated Na+ channels in their plasma membrane. The analysis of the biophysical and pharmacological properties of the current and PCR-based cloning revealed the presence of Nav1.7 channels in immature DCs. Transition from the immature to a mature differentiation state, however, was accompanied by the down-regulation of Nav1.7 expression concomitant with the up-regulation of voltage-gated Kv1.3 K+ channel expression. The presence of Kv1.3 channels seems to be common for immune cells; hence, selective Kv1.3 blockers may emerge as candidates for inhibiting various functions of mature DCs that involve their migratory, cytokine-secreting, and T cell-activating potential.


Biochemical Pharmacology | 2008

A selective blocker of Kv1.2 and Kv1.3 potassium channels from the venom of the scorpion Centruroides suffusus suffusus

Gerardo Corzo; Ferenc Papp; Zoltán Varga; Omar Barraza; Pavel G. Espino-Solis; Ricardo C. Rodríguez de la Vega; R. Gáspár; Gyorgy Panyi; Lourival D. Possani

A novel potassium channel blocker peptide was purified from the venom of the scorpion Centruroides suffusus suffusus by high-performance liquid chromatography and its amino acid sequence was completed by Edman degradation and mass spectrometry analysis. It contains 38 amino acid residues with a molecular weight of 4000.3Da, tightly folded by three disulfide bridges. This peptide, named Css20, was shown to block preferentially the currents of the voltage-dependent K+-channels Kv1.2 and Kv1.3. It did not affect several other ion channels tested at 10 nM concentration. Concentration-response curves of Css20 yielded an IC50 of 1.3 and 7.2 nM for Kv1.2- and Kv1.3-channels, respectively. Interestingly, despite the similar affinities for the two channels the association and dissociation rates of the toxin were much slower for Kv1.2, implying that different interactions may be involved in binding to the two channel types; an implication further supported by in silico docking analyses. Based on the primary structure of Css20, the systematic nomenclature proposed for this toxin is alpha-KTx 2.13.


The Journal of Membrane Biology | 2001

Effects of toxins Pi2 and Pi3 on human T lymphocyte Kv1.3 channels: the role of Glu7 and Lys24.

Mózes Péter; Zoltán Varga; Péter Hajdu; R. Gáspár; Sándor Damjanovich; Eduardo Horjales; Lourival D. Possani; Gyorgy Panyi

Abstract.Pandinus imperator scorpion toxins Pi2 and Pi3 differ only by a single amino acid residue (neutral Pro7 in Pi2 vs. acidic Glu7 in Pi3). The binding kinetics of these toxins to human Kv1.3 showed that the decreased on rate (kON= 2.18 × 108m−1sec−1 for Pi2 and 1.28 × 107m−1sec−1 for Pi3) was almost entirely responsible for the increased dissociation constant (Kd) of Pi3 (Kd= 795 pm) as compared to Pi2 (Kd= 44 pm). The ionic strength dependence of the association rates was exactly the same for the two toxins indicating that through-space electrostatic interactions can not account for the different on rates. Results were further analyzed on the basis of the three-dimensional structural models of the toxins. A 3D structure of Pi3 was generated from the NMR spectroscopy coordinates of Pi2 by computer modeling. The Pi3 model resulted in a salt bridge between Glu7 and Lys24 in Pi3. Based on this finding our interpretation of the reduced on rate of Pi3 is that the intramolecular salt bridge reduces the local positive electrostatic potential around Lys24 resulting in decreased short-range electrostatic interactions during the binding step. To support our finding, we constructed a 3D model of the Ser-10-Asp Charybdotoxin mutant displaying distinctly reduced affinity for Shaker channels. The mutant Charybdotoxin structure also displayed a salt bridge between residues Asp10 and Lys27 equivalent to the one between Glu7 and Lys24 in Pi3.


Biophysical Chemistry | 1999

Two-dimensional receptor patterns in the plasma membrane of cells. A critical evaluation of their identification, origin and information content

Sándor Damjanovich; László Bene; János Matkó; László Mátyus; Zoltán Krasznai; Gábor Szabó; Carlo Pieri; R. Gáspár; János Szöllosi

A concise review is presented on the nature, possible origin and functional significance of cell surface receptor patterns in the plasma membrane of lymphoid cells. A special emphasize has been laid on the available methodological approaches, their individual virtues and sources of errors. Fluorescence energy transfer is one of the oldest available means for studying non-randomized co-distribution patterns of cell surface receptors. A detailed and critical description is given on the generation of two-dimensional cell surface receptor patterns based on pair-wise energy transfer measurements. A second hierarchical-level of receptor clusters have been described by electron and scanning force microscopies after immuno-gold-labeling of distinct receptor kinds. The origin of these receptor islands at a nanometer scale and island groups at a higher hierarchical (mum) level, has been explained mostly by detergent insoluble glycolipid-enriched complexes known as rafts, or detergent insoluble glycolipids (DIGs). These rafts are the most-likely organizational forces behind at least some kind of receptor clustering [K. Simons et al., Nature 387 (1997) 569]. These models, which have great significance in trans-membrane signaling and intra-membrane and intracellular trafficking, are accentuating the necessity to revisit the Singer-Nicolson fluid mosaic membrane model and substitute the free protein diffusion with a restricted diffusion concept [S.J. Singer et al., Science 175 (1972) 720].


Cytometry | 1997

Major histocompatibility complex class I protein conformation altered by transmembrane potential changes

László Bene; János Szöllosi; Margit Balázs; László Mátyus; R. Gáspár; Marcel Ameloot; Robert Dale; Sándor Damjanovich

The nature of charge distributions in membrane-bound macromolecular structures renders them susceptible to interaction with transmembrane potential fields. As a result, conformational changes in such species may be expected to occur when this potential is altered. We have detected reversible conformational change in the major histocompatibility complex (MHC) class I antigen in the plasma membrane of human JY cells, as monitored by flow-cytometric resonance energy-transfer, upon reduction of the transmembrane potential (depolarization). This change increased the intramolecular energy-transfer efficiency between fluorescent donor- and acceptor-labeled monoclonal antibodies directed, respectively, to epitopes on the light (beta 2-microglobulin) and the heavy chains of the MHC class I antigen. Repolarization of the depolarized samples restored the energy-transfer efficiency to the original values measured before depolarization. Depolarization caused similar relative changes in fluorescence resonance energy-transfer efficiency when Fab fragments were used for labeling MHC class I complex, suggesting that the observed phenomenon is not restricted to whole monoclonal antibodies.

Collaboration


Dive into the R. Gáspár's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Pieri

Nuclear Regulatory Commission

View shared research outputs
Top Co-Authors

Avatar

Lourival D. Possani

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge