Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sándor Damjanovich is active.

Publication


Featured researches published by Sándor Damjanovich.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model

György Vereb; János Szöllosi; János Matkó; Péter Nagy; Tibor Farkas; László Vígh; László Mátyus; Thomas A. Waldmann; Sándor Damjanovich

The fluid mosaic membrane model proved to be a very useful hypothesis in explaining many, but certainly not all, phenomena taking place in biological membranes. New experimental data show that the compartmentalization of membrane components can be as important for effective signal transduction as is the fluidity of the membrane. In this work, we pay tribute to the Singer–Nicolson model, which is near its 30th anniversary, honoring its basic features, “mosaicism” and “diffusion,” which predict the interspersion of proteins and lipids and their ability to undergo dynamic rearrangement via Brownian motion. At the same time, modifications based on quantitative data are proposed, highlighting the often genetically predestined, yet flexible, multilevel structure implementing a vast complexity of cellular functions. This new “dynamically structured mosaic model” bears the following characteristics: emphasis is shifted from fluidity to mosaicism, which, in our interpretation, means nonrandom codistribution patterns of specific kinds of membrane proteins forming small-scale clusters at the molecular level and large-scale clusters (groups of clusters, islands) at the submicrometer level. The cohesive forces, which maintain these assemblies as principal elements of the membranes, originate from within a microdomain structure, where lipid–lipid, protein–protein, and protein–lipid interactions, as well as sub- and supramembrane (cytoskeletal, extracellular matrix, other cell) effectors, many of them genetically predestined, play equally important roles. The concept of fluidity in the original model now is interpreted as permissiveness of the architecture to continuous, dynamic restructuring of the molecular- and higher-level clusters according to the needs of the cell and as evoked by the environment.


European Journal of Immunology | 2001

Lipopolysaccharide and ceramide docking to CD14 provokes ligand‐specific receptor clustering in rafts

Alexandra Pfeiffer; Alfred Böttcher; Evelyn Orsó; Michael Kapinsky; Péter Nagy; Andrea Bodnár; Ingo Spreitzer; Gerhard Liebisch; Wolfgang Drobnik; Klaus Gempel; Markus Horn; Stefan Holmer; Thomas Hartung; Gabriele Multhoff; Gerhard J. Schütz; Hansgeorg Schindler; Artur J. Ulmer; Holger Heine; Felix Stelter; Christine Schütt; Gregor Rothe; János Szöllosi; Sándor Damjanovich; Gerd Schmitz

The glycosylphosphatidylinositol‐anchored receptor CD14 plays a major role in the inflammatory response of monocytes to lipopolysaccharide. Here, we describe that ceramide, a constituent of atherogenic lipoproteins, binds to CD14 and induces clustering of CD14 to co‐receptors in rafts. In resting cells, CD14 was associated with CD55, the Fcγ‐receptors CD32 and CD64 and the pentaspan CD47. Ceramide further recruited the complement receptor 3 (CD11b/CD18) and CD36 into proximity of CD14. Lipopolysaccharide, in addition, induced co‐clustering with Toll‐like receptor 4, Fcγ‐RIIIa (CD16a) and the tetraspanin CD81 while CD47 was dissociated. The different receptor complexes may be linked to ligand‐specific cellular responses initiated by CD14.


Cytometry | 1998

Application of fluorescence resonance energy transfer in the clinical laboratory: Routine and research

János Szöllosi; Sándor Damjanovich; László Mátyus

Fluorescence resonance energy transfer (FRET) phenomenon has been applied to a variety of scientific challenges in the past. The potential utility of this biophysical tool will be revisited in the 21st century. The rapid digital signal processing in conjunction with personal computers and the wide use of multicolor laser technology in clinical flow cytometry opened an opportunity for multiplexed assay systems. The concept is very simple. Color-coded microspheres are used as solid-phase matrix for the detection of fluorescent labeled molecules. It is the homogeneous assay methodology in which solid-phase particles behave similarly to the dynamics of a liquid environment. This approach offers a rapid cost-effective technology that harnesses a wide variety of fluorochromes and lasers. With this microsphere technology, the potential applications for clinical flow cytometry in the future are enormous. This new approach of well-established clinically proven methods sets the stage to briefly review the theoretical and practical aspects of FRET technology. The review shows various applications of FRET in research and clinical laboratories. Combination of FRET with monoclonal antibodies resulted in a boom of structural analysis of proteins in solutions and also in biological membranes. Cell surface mapping of cluster of differentiation molecules on immunocompetent cells has gained more and more interest in the last decade. Several examples for biological applications are discussed in detail. FRET can also be used to improve the spectral characteristics of fluorescent dyes and dye combinations, such as the tandem dyes in flow and image cytometry and the FRET primers in DNA sequencing and polymerase chain reactions. The advantages and disadvantages of donor-acceptor dye combinations are evaluated. In addition, the sensitivity of FRET provides the basis for establishing fast, robust, and accurate enzyme assays and immunoassays. Benefits and limitations of FRET-based assays are thoroughly scrutinized. At the end of the paper we review the future of FRET methodology.


Biophysical Journal | 1984

Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis.

L. Trón; János Szöllosi; Sándor Damjanovich; S.H. Helliwell; Donna J. Arndt-Jovin; Thomas M. Jovin

A method has been developed for the determination of the efficiency (E) of the fluorescence resonance energy transfer between moieties on cell surfaces by use of a computer-controlled flow cytometer capable of dual wavelength excitation. The absolute value of E may be calculated on a single-cell basis. The analysis requires the measurement of samples stained with donor and acceptor conjugated ligands alone as well as together. In model experiments HK 22 murine lymphoma cells labeled with fluorescein-conjugated concanavalin A (Con A) and/or rhodamine conjugated Con A were used to determine energy transfer histograms. Using the analytic solution to energy transfer in two dimensions, a high surface density of Con A binding sites was found that suggests that the Con A receptor sites on the cell surface are to a degree preclustered . We call this technique flow cytometric energy transfer ( FCET ).


Journal of Cell Science | 2002

Lipid rafts and the local density of ErbB proteins influence the biological role of homo- and heteroassociations of ErbB2

Péter Nagy; György Vereb; Zsolt Sebestyén; Gábor Horváth; Stephen J. Lockett; Sándor Damjanovich; John W. Park; Thomas M. Jovin; J. Szoelloesi

The ErbB family of transmembrane receptor tyrosine kinases plays an important role in the pathogenesis of many cancers. The four members of the family, ErbB1-4, form various homo- and heterodimers during the course of signal transduction. A second hierarchical level of molecular associations involving 102-103 molecules, termed large-scale clustering, has also been identified, but the regulatory factors and biological consequences of such structures have not been systematically evaluated. In this report, we describe the states of association of ErbB2 and their relationship to local ErbB3 density and lipid rafts based on quantitative fluorescence microscopy of SKBR-3 breast cancer cells. Clusters of ErbB2 colocalized with lipid rafts identified by the GM1-binding B subunit of cholera toxin. Pixel-by-pixel analysis of fluorescence resonance energy transfer between labeled antibodies indicated that the homoassociation (homodimerization) of ErbB2 was proportional to the local density of ErbB2 and inversely proportional to that of ErbB3 and of the raft-specific lipid GM1. Crosslinking lipid rafts with the B subunit of cholera toxin caused dissociation of the rafts and ErbB2 clusters, an effect that was independent of the cytoskeletal anchoring of ErbB2. Crosslinking also decreased ErbB2-ErbB3 heteroassociation and the EGF- and heregulin-induced tyrosine phosphorylation of Shc. When cells were treated with the anti-ErbB2 monoclonal antibody 4D5 (parent murine version of Trastuzumab used in the immunotherapy of breast cancer), internalization of the antibody was inhibited by crosslinking of lipid rafts, but the antiproliferative activity of 4D5 was retained and even enhanced. We conclude that local densities of ErbB2 and ErbB3, as well as the lipid environment profoundly influence the association properties and biological function of ErbB2.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes

Gyorgy Panyi; M. Bagdány; Andrea Bodnár; György Vámosi; Gergely Szentesi; Attila Jenei; László Mátyus; Sándor Varga; Thomas A. Waldmann; R. Gáspár; Sándor Damjanovich

Distribution and lateral organization of Kv1.3 potassium channels and CD3 molecules were studied by using electron microscopy, confocal laser scanning microscopy, and fluorescence resonance energy transfer. Immunogold labeling and electron microscopy showed that the distribution of FLAG epitope-tagged Kv1.3 channels (Kv1.3/FLAG) significantly differs from the stochastic Poisson distribution in the plasma membrane of human T lymphoma cells. Confocal laser scanning microscopy images showed that Kv1.3/FLAG channels and CD3 molecules accumulated in largely overlapping membrane areas. The numerical analysis of crosscorrelation of the spatial intensity distributions yielded a high correlation coefficient (C = 0.64). A different hierarchical level of molecular proximity between Kv1.3/FLAG and CD3 proteins was reported by a high fluorescence resonance energy transfer efficiency (E = 51%). These findings implicate that reciprocal regulation of ion-channel activity, membrane potential, and the function of receptor complexes may contribute to the proper functioning of the immunological synapse.


Cytometry | 1998

EGF‐induced redistribution of erbB2 on breast tumor cells: Flow and image cytometric energy transfer measurements

Péter Nagy; László Bene; Margit Balázs; William C. Hyun; Steven J. Lockett; Nan Chiang; F. Waldman; Burt G. Feuerstein; Sándor Damjanovich; János Szöllosi

erbB2, a member of the epidermal growth factor (EGF) receptor-type tyrosine kinase receptor family, is overexpressed in breast carcinomas with poor prognosis. We examined the cell surface association of this receptor with itself and with other cell surface proteins by the Förster-type fluorescence resonance energy transfer using whole antibodies and Fab fragments. We found that erbB2 molecules homoassociate in unstimulated SK-BR-3, BT474 and BT474-M (a metastatic version of the parent BT474 line) breast tumor cells, and that the interaction was enhanced by EGF treatment in suspensions of SK-BR-3 and BT474-M cells. BT474 cells (with low EGF receptor expression) and attached SK-BR-3 cells do not respond to EGF. Image microscopic energy transfer measurements found considerable pixel-by-pixel heterogeneity in the homoassociation state of erbB2. In accordance with the EGF-induced redistribution of erbB2, EGF receptor was found to be in close proximity to erbB2 in FRET measurements. By labeling different epitopes on erbB2 and the lipid bilayer, we were able to prepare an epitope map of erbB2 molecule. Our data suggest the existence of dynamic cell surface patterns of erbB2 and point to functions fulfilled by these molecular complexes.


Pathology & Oncology Research | 1999

Complexity of signal transduction mediated by ErbB2: clues to the potential of receptor-targeted cancer therapy

Péter Nagy; Attila Jenei; Sándor Damjanovich; Thomas M. Jovin; János Szôlôsi

The erbB2 oncogene belongs to the type I transmembrane tyrosine kinase family of receptors. Its medical importance stems from its widespread overexpression in breast cancer. This review will focus on the signal transduction through this protein, and explains how the overexpression of erbB2 may result in poor prognosis of breast cancer, and finally it will summerize our current understanding about the therapeutic potential of receptor-targeted therapy in breast cancer. ErbB2 does not have any known ligand which is able to bind to it with high affinity. However the kinase activity of erbB2 can be activated without any ligand, if it is overexpressed, and by heteroassociation with other members of the erbB family (erbB1 or epidermal growth factor receptor, erbB3 and erbB4). This interaction substantially increases the efficiency and diversity of signal transduction through these receptor complexes. In addition, erbB2 forms large scale receptor clusters containing hundreds of proteins. These receptor islands may take part in recruiting cytosolic factors which relay the signal towards the nucleus or the cytoplasm. Overexpression of erbB2 was linked to higher transforming activity, increased metastatic potential, angiogenesis and drug resistence of breast tumor in laboratory experiments. As a corollary of these properties, erbB2 amplification is generally thought to be associated with a poor prognosis in breast cancer patients. These early findings lead to the development of antibodies that down-regulate erbB2. Such a therapeutic approach has already been found effective in experimental tumor models and in clinical trials as well. Further understanding of the importance of erbB2 and growth factor receptors in the transformation of normal cells to malignant ones may once give us a chance to cure erbB2 overexpressing breast cancer.


Reviews in Molecular Biotechnology | 2002

Applications of fluorescence resonance energy transfer for mapping biological membranes

János Szöllosi; Peter D. Nagy; Zsolt Sebestyén; Sándor Damjanovich; John W. Park; László Mátyus

The interaction of the cell surface proteins plays a key role in the process of transmembrane signaling. Receptor clustering and changes in their conformation are often essential factors in the final outcome of ligand receptor interactions. Fluorescence resonance energy transfer (FRET) is an excellent tool for determining distance relationships and supramolecular organization of cell surface molecules. This paper reviews the theoretical background of fluorescence resonance energy transfer, its flow cytometric and microscopic applications (including the intensity based and photobleaching versions), and provides a critical evaluation of the methods as well. In order to illustrate the applicability of the method, we summarize a few biological results: clustering of lectin receptors, cell surface distribution of hematopoietic cluster of differentiation (CD) molecules, and that of the receptor tyrosine kinases, conformational changes of Major Histocompatibility Complex (MHC) I molecules upon membrane potential change and ligand binding.


Journal of Immunology | 2001

Clustering of Class I HLA Oligomers with CD8 and TCR: Three-Dimensional Models Based on Fluorescence Resonance Energy Transfer and Crystallographic Data

Rezső Gáspár; Péter Bagossi; László Bene; János Matkó; János Szöllősi; József Tőzsér; László Fésüs; Thomas A. Waldmann; Sándor Damjanovich

Fluorescence resonance energy transfer (FRET) data, in accordance with lateral mobility measurements, suggested the existence of class I HLA dimers and oligomers at the surface of live human cells, including the B lymphoblast cell line (JY) used in the present study. Intra- and intermolecular class I HLA epitope distances were measured on JY B cells by FRET using fluorophore-conjugated Ag-binding fragments of mAbs W6/32 and L368 directed against structurally well-characterized heavy and light chain epitopes, respectively. Out-of-plane location of these epitopes relative to the membrane-bound BODIPY-PC (2-(4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine) was also determined by FRET. Computer-simulated docking of crystallographic structures of class I HLA and epitope-specific Ag-binding fragments, with experimentally determined interepitope and epitope to cell surface distances as constraints, revealed several sterically allowed and FRET-compatible class I HLA dimeric and tetrameric arrangements. Extension of the tetrameric class I HLA model with interacting TCR and CD8 resulted in a model of a supramolecular cluster that may exist physiologically and serve as a functionally significant unit for a network of CD8-HLA-I complexes providing enhanced signaling efficiency even at low MHC-peptide concentrations at the interface of effector and APCs.

Collaboration


Dive into the Sándor Damjanovich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Gáspár

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lajos Trón

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Pieri

Nuclear Regulatory Commission

View shared research outputs
Researchain Logo
Decentralizing Knowledge