Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Gwilliam is active.

Publication


Featured researches published by R. Gwilliam.


Nature | 2010

Integrating common and rare genetic variation in diverse human populations.

David Altshuler; Richard A. Gibbs; Leena Peltonen; Emmanouil T. Dermitzakis; Stephen F. Schaffner; Fuli Yu; Penelope E. Bonnen; de Bakker Pi; Panos Deloukas; Stacey Gabriel; R. Gwilliam; Sarah Hunt; Michael Inouye; Xiaoming Jia; Aarno Palotie; Melissa Parkin; Pamela Whittaker; Kyle Chang; Alicia Hawes; Lora Lewis; Yanru Ren; David A. Wheeler; Donna M. Muzny; C. Barnes; Katayoon Darvishi; Joshua M. Korn; Kristiansson K; Cin-Ty A. Lee; McCarrol Sa; James Nemesh

Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called ‘HapMap 3’, includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of ≤5%, and demonstrated the feasibility of imputing newly discovered CNPs and SNPs. This expanded public resource of genome variants in global populations supports deeper interrogation of genomic variation and its role in human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.


Nature | 2005

Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus.

William C. Nierman; Arnab Pain; Michael J. Anderson; Jennifer R. Wortman; H. Stanley Kim; Javier Arroyo; Matthew Berriman; Keietsu Abe; David B. Archer; Clara Bermejo; Joan W. Bennett; Paul Bowyer; Dan Chen; Matthew Collins; Richard Coulsen; Robert Davies; Paul S. Dyer; Mark L. Farman; Nadia Fedorova; Natalie D. Fedorova; Tamara V. Feldblyum; Reinhard Fischer; Nigel Fosker; Audrey Fraser; José Luis García; María José García; Ariette Goble; Gustavo H. Goldman; Katsuya Gomi; Sam Griffith-Jones

Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.


The Lancet | 2008

Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study

J.B. Richards; Fernando Rivadeneira; Michael Inouye; Tomi Pastinen; Nicole Soranzo; Scott G. Wilson; Toby Andrew; Mario Falchi; R. Gwilliam; Kourosh R. Ahmadi; Ana M. Valdes; P. Arp; Pamela Whittaker; Dominique J. Verlaan; Mila Jhamai; Vasudev Kumanduri; M. Moorhouse; J.B. van Meurs; Albert Hofman; Huibert A. P. Pols; Deborah J. Hart; Guangju Zhai; Bernet Kato; B.H. Mullin; Feng Zhang; Panos Deloukas; A.G. Uitterlinden; Tim D. Spector

Summary Background Osteoporosis is diagnosed by the measurement of bone mineral density, which is a highly heritable and multifactorial trait. We aimed to identify genetic loci that are associated with bone mineral density. Methods In this genome-wide association study, we identified the most promising of 314 075 single nucleotide polymorphisms (SNPs) in 2094 women in a UK study. We then tested these SNPs for replication in 6463 people from three other cohorts in western Europe. We also investigated allelic expression in lymphoblast cell lines. We tested the association between the replicated SNPs and osteoporotic fractures with data from two studies. Findings We identified genome-wide evidence for an association between bone mineral density and two SNPs (p<5×10−8). The SNPs were rs4355801, on chromosome 8, near to the TNFRSF11B (osteoprotegerin) gene, and rs3736228, on chromosome 11 in the LRP5 (lipoprotein-receptor-related protein) gene. A non-synonymous SNP in the LRP5 gene was associated with decreased bone mineral density (rs3736228, p=6·3×10−12 for lumbar spine and p=1·9×10−4 for femoral neck) and an increased risk of both osteoporotic fractures (odds ratio [OR] 1·3, 95% CI 1·09–1·52, p=0·002) and osteoporosis (OR 1·3, 1·08–1·63, p=0·008). Three SNPs near the TNFRSF11B gene were associated with decreased bone mineral density (top SNP, rs4355801: p=7·6×10−10 for lumbar spine and p=3·3×10−8 for femoral neck) and increased risk of osteoporosis (OR 1·2, 95% CI 1·01–1·42, p=0·038). For carriers of the risk allele at rs4355801, expression of TNFRSF11B in lymphoblast cell lines was halved (p=3·0×10−6). 1883 (22%) of 8557 people were at least heterozygous for these risk alleles, and these alleles had a cumulative association with bone mineral density (trend p=2·3×10−17). The presence of both risk alleles increased the risk of osteoporotic fractures (OR 1·3, 1·08–1·63, p=0·006) and this effect was independent of bone mineral density. Interpretation Two gene variants of key biological proteins increase the risk of osteoporosis and osteoporotic fracture. The combined effect of these risk alleles on fractures is similar to that of most well-replicated environmental risk factors, and they are present in more than one in five white people, suggesting a potential role in screening. Funding Wellcome Trust, European Commission, NWO Investments, Arthritis Research Campaign, Chronic Disease Research Foundation, Canadian Institutes of Health Research, European Society for Clinical and Economic Aspects of Osteoporosis, Genome Canada, Genome Quebéc, Canada Research Chairs, National Health and Medical Research Council of Australia, and European Union.


Scopus | 2011

Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility

David Evans; Alexander Dilthey; M. Pirinen; Tetyana Zayats; C. C. A. Spencer; Z. Su; Céline Bellenguez; Colin Freeman; Amy Strange; Gilean McVean; Peter Donnelly; J. J. Pointon; David Harvey; L. H. Appleton; T. Wordsworth; Tugce Karaderi; C Farrar; Paul Bowness; B. P. Wordsworth; Grazyna Kochan; U. Opperman; M Stone; L. Moutsianis; Stephen Leslie; Tony J. Kenna; Gethin P. Thomas; Linda A. Bradbury; Patrick Danoy; Matthew A. Brown; M. Ward

Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10−8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10−6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27–positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.


Nature | 1999

The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum.

Sharen Bowman; D. Lawson; D. Basham; D. Brown; Tracey Chillingworth; Carol Churcher; Alister G. Craig; Robert Davies; K. Devlin; Theresa Feltwell; S. Gentles; R. Gwilliam; N. Hamlin; David J. Harris; S. Holroyd; T. Hornsby; Paul Horrocks; Kay Jagels; B. Jassal; S. Kyes; J. McLean; Sharon Moule; Karen Mungall; Lee Murphy; Karen Oliver; Michael A. Quail; Marie-Adele Rajandream; Simon Rutter; J. Skelton; R. Squares

Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5′ or 3′ exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.


Nature | 2002

Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13

Neil Hall; Arnab Pain; Matthew Berriman; Carol Churcher; Barbara Harris; David Harris; Karen Mungall; Sharen Bowman; Rebecca Atkin; Stephen Baker; Andy Barron; Karen Brooks; Caroline O. Buckee; C. Burrows; Inna Cherevach; Tracey Chillingworth; Z. Christodoulou; Louise Clark; Richard Clark; Craig Corton; Ann Cronin; Robert Davies; Paul Davis; P. Dear; F. Dearden; Jonathon Doggett; Theresa Feltwell; Arlette Goble; Ian Goodhead; R. Gwilliam

Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3–9 and 13 of P. falciparum clone 3D7—these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.


Annals of the Rheumatic Diseases | 2011

Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study

Kalliope Panoutsopoulou; Lorraine Southam; Katherine S. Elliott; N Wrayner; Guangju Zhai; Claude Beazley; Gudmar Thorleifsson; N K Arden; Andrew Carr; Kay Chapman; Panos Deloukas; Michael Doherty; A. W. McCaskie; William Ollier; Stuart H. Ralston; Tim D. Spector; Ana M. Valdes; Gillian A. Wallis; J M Wilkinson; E Arden; K Battley; Hannah Blackburn; F.J. Blanco; Suzannah Bumpstead; L. A. Cupples; Aaron G. Day-Williams; K Dixon; Sally Doherty; Tonu Esko; Evangelos Evangelou

Objectives The genetic aetiology of osteoarthritis has not yet been elucidated. To enable a well-powered genome-wide association study (GWAS) for osteoarthritis, the authors have formed the arcOGEN Consortium, a UK-wide collaborative effort aiming to scan genome-wide over 7500 osteoarthritis cases in a two-stage genome-wide association scan. Here the authors report the findings of the stage 1 interim analysis. Methods The authors have performed a genome-wide association scan for knee and hip osteoarthritis in 3177 cases and 4894 population-based controls from the UK. Replication of promising signals was carried out in silico in five further scans (44 449 individuals), and de novo in 14 534 independent samples, all of European descent. Results None of the association signals the authors identified reach genome-wide levels of statistical significance, therefore stressing the need for corroboration in sample sets of a larger size. Application of analytical approaches to examine the allelic architecture of disease to the stage 1 genome-wide association scan data suggests that osteoarthritis is a highly polygenic disease with multiple risk variants conferring small effects. Conclusions Identifying loci conferring susceptibility to osteoarthritis will require large-scale sample sizes and well-defined phenotypes to minimise heterogeneity.


Dna Sequence | 1996

Physical Mapping of Chromosome 6: A Strategy for the Rapid Generation of Sequence-Ready Contigs

Andrew J. Mungall; A. C. Edwards; A. S. Ranby; J. S. Humphray; W. R. Heathcott; Cm. Clee; L. C. East; E. Holloway; P. A. Butler; F. C. Langford; R. Gwilliam; M. K. Rice; L. G. Maslen; P. N. Carter; T. M. Ross; Panos Deloukas; R. D. Bentley; Ian Dunham

The development of radiation hybrid (RH) mapping (Cox et al., 1990) and the availability of large numbers of STS markers, together with extensive bacterial clone resources provided a means to accelerate the process of mapping a human chromosome and preparing bacterial clone contigs ready to sequence. Our aim is to construct physical clone maps covering those regions of chromosome 6 that are not currently extensively mapped, and use these to determine the DNA sequence of the whole chromosome. We report here a strategy which initially involves establishing a high density framework map using RH mapping. The framework markers are then used for the identification of bacterial genomic clones covering the chromosome. The bacterial clones are analysed by restriction enzyme fingerprinting and STS-content analysis to identify sequence-ready contigs. Contig gap closure will also be performed by clone walking.


Dna Sequence | 1997

From Long Range Mapping to Sequence-Ready Contigs on Human Chromosome 6

Andrew J. Mungall; Sean Humphray; S. A. Ranby; Cathryn Edwards; R. W. Heathcott; C. M. Clee; E. Holloway; A. I. Peck; P. Harrison; L. Green; Adam Butler; Cordelia Langford; R. Gwilliam; Elizabeth J. Huckle; L. Baron; Albert V. Smith; M. A. Leversha; Y. H. Ramsey; S. M. Clegg; Catherine M. Rice; Gareth Maslen; Sarah Hunt; Carol Scott; Carol Soderlund; A. J. Theaker; Nigel P. Carter; Mark T. Ross; Panos Deloukas; David R. Bentley; Ian Dunham

Our aim is to construct physical clone maps covering those regions of chromosome 6 that are not currently extensively mapped, and use these to determine the DNA sequence of the whole chromosome. The strategy we are following involves establishing a high density framework map of the order of 15 markers per Megabase using radiation hybrid (RH) mapping. The markers are then used to identify large-insert genomic bacterial clones covering the chromosome, which are assembled into sequence-ready contigs by restriction enzyme fingerprinting and sequence tagged site (STS) content analysis. Contig gap closure is performed by walking experiments using STSs developed from the end sequences of the clone inserts.


Nature Genetics | 2009

Erratum: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease (Nature Genetics (2009) 41 (1088-1093))

D Harold; Roby Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; J Singh Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Natalie Jones; Claire Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petra Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Christopher Holmes

Collaboration


Dive into the R. Gwilliam's collaboration.

Top Co-Authors

Avatar

Panos Deloukas

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Robert Davies

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Matthew Berriman

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Arnab Pain

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dan Chen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadia Fedorova

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge