R. H. D. Townsend
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. H. D. Townsend.
Astrophysical Journal Supplement Series | 2013
Bill Paxton; Matteo Cantiello; Phil Arras; Lars Bildsten; Edward F. Brown; Aaron Dotter; Christopher Mankovich; M. H. Montgomery; D. Stello; Frank Timmes; R. H. D. Townsend
We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA stars ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESAs calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.
Monthly Notices of the Royal Astronomical Society | 2004
R. H. D. Townsend; Stanley P. Owocki; Ian D. Howarth
We argue that, in general, observational studies of Be-star rotation have paid insufficient attention to the effects of equatorial gravity darkening. We present new line-profile calculations that emphasize the insensitivity of line width to rotation for fast rotators. Coupled with a critical review of observational procedures, these calculations suggest that the observational parameter v sin i may systematically underestimate the true projected equatorial rotation velocity, v e sin i, by some tens of per cent for rapid rotators. A crucial implication of this work is that Be stars may be rotating much closer to their critical velocities than is generally supposed, bringing a range of new processes into contention for the elusive physical mechanism responsible for the circumstellar disc thought to be central to the Be phenomenon.
The Astrophysical Journal | 2005
Marc Gagne; M. E. Oksala; David H. Cohen; Stephanie Tonnesen; Asif ud-Doula; Stanley P. Owocki; R. H. D. Townsend; J. J. MacFarlane
We report on four Chandra grating observations of the oblique magnetic rotator � 1 Ori C (O5.5 V), covering a wide range of viewing angles with respect to the star’s 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray–emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hotplasma. We investigate these diagnostics as a function of viewing angle andanalyzetheminconjunctionwithnewMHDsimulationsofthemagneticallychanneledwindshockmechanism on � 1 Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray–emitting plasma with rotation phase. Subject headingg stars: early-type — stars: individual (HD 37022) — stars: magnetic fields — stars: mass loss — stars: rotation — stars: winds, outflows — X-rays: stars Online material: color figure
Monthly Notices of the Royal Astronomical Society | 2009
Asif ud-Doula; Stanley P. Owocki; R. H. D. Townsend
We examine the angular momentum loss and associated rotational spin-down for magnetic hot stars with a line-driven stellar wind and a rotation-aligned dipole magnetic field. Our analysis here is based on our previous two-dimensional numerical magnetohydrodynamics simulation study that examines the interplay among wind, field and rotation as a function of two dimensionless parameters: one characterizing the wind magnetic confinement () and the other the ratio (W≡Vrot/Vorb) of stellar rotation to critical (orbital) speed. We compare and contrast the two-dimensional, time-variable angular momentum loss of this dipole model of a hot-star wind with the classical one-dimensional steady-state analysis by Weber and Davis (WD), who used an idealized monopole field to model the angular momentum loss in the solar wind. Despite the differences, we find that the total angular momentum loss averaged over both solid angle and time closely follows the general WD scaling , where is the mass-loss rate, Ω is the stellar angular velocity and RA is a characteristic Alfven radius. However, a key distinction here is that for a dipole field, this Alfven radius has a strong-field scaling RA/R*≈η1/4*, instead of the scaling for a monopole field. This leads to a slower stellar spin-down time that in the dipole case scales as , where is the characteristic mass loss time and k is the dimensionless factor for stellar moment of inertia. The full numerical scaling relation that we cite gives typical spin-down times of the order of 1 Myr for several known magnetic massive stars.
Monthly Notices of the Royal Astronomical Society | 2013
V. Petit; Stanley P. Owocki; G. A. Wade; David H. Cohen; Jon O. Sundqvist; M. Cagné; J. Maíz Apellániz; M. E. Oksala; David A. Bohlender; Thomas Rivinius; Huib F. Henrichs; E. Alecian; R. H. D. Townsend; Asif ud-Doula
Building on results from the Magnetism in Massive Stars (MiMeS) project, this paper shows how a two-parameter classification of massive-star magnetospheres in terms of the magnetic wind confinement (which sets the Alfv´ en radius RA) and stellar rotation (which sets the Kepler co-rotation radius RK) provides a useful organization of both observational signatures and theoretical predictions. We compile the first comprehensive study of inferred and observed values for relevant stellar and magnetic parameters of 64 confirmed magnetic OB stars with Teff 16 kK. Using these parameters, we locate the stars in the magnetic confinement–rotation diagram, a log–log plot of RK versus RA. This diagram can be subdivided into regimes of centrifugal magnetospheres (CM), with RA > RK ,v ersusdynamical magnetospheres (DM), with RK > RA. We show how key observational diagnostics, like the presence and characteristics of Hα emission, depend on a star’s position within the diagram, as well as other parameters, especially the expected wind mass-loss rates. In particular, we identify two distinct populations of magnetic stars with Hα emission: namely, slowly rotating O-type stars with narrow emission consistent with a DM, and more rapidly rotating B-type stars with broader emission associated with a CM. For O-type stars, the high mass-loss rates are sufficient to accumulate enough material for line emission even within the relatively short free-fall time-scale associated with a DM: this high mass-loss rate also leads to a rapid magnetic spindown of the stellar rotation. For the B-type stars, the longer confinement of a CM is required to accumulate sufficient emitting material from their relatively weak winds, which also lead to much longer spindown time-scales. Finally, we discuss how other observational diagnostics, e.g. variability of UV wind lines or X-ray emission, relate to the inferred magnetic properties of these stars, and summarize prospects for future developments in our understanding of massive-star magnetospheres.
The Astrophysical Journal | 2005
R. H. D. Townsend; Stanley P. Owocki; D. Groote
We characterize the observed variability of the magnetic helium-strong star σ Ori E in terms of a recently developed rigidly rotating magnetosphere model. This model predicts the accumulation of circumstellar plasma in two corotating clouds, situated in magnetohydrostatic equilibrium at the intersections between the magnetic and rotational equators. We find that the model can reproduce well the periodic modulations observed in the stars light curve, Hα emission-line profile, and longitudinal field strength, confirming that it furnishes an essentially correct, quantitative description of the stars magnetically controlled circumstellar environment.
Monthly Notices of the Royal Astronomical Society | 2013
R. H. D. Townsend; S. A. Teitler
We present a new oscillation code, GYRE, which solves the stellar pulsation equations (both adiabatic and non-adiabatic) using a novel Magnus Multiple Shooting numerical scheme devised to overcome certain weaknesses of the usual relaxation and shooting schemes appearing in the literature. The code is accurate (up to 6th order in the number of grid points), robust, efficiently makes use of multiple processor cores and/or nodes, and is freely available in source form for use and distribution. We verify the code against analytic solutions and results from other oscillation codes, in all cases finding good agreement. Then, we use the code to explore how the asteroseismic observables of a 1.5 M star change as it evolves through the red-giant bump.
Monthly Notices of the Royal Astronomical Society | 2016
G. A. Wade; C. Neiner; E. Alecian; J. Grunhut; V. Petit; B. de Batz; David A. Bohlender; David H. Cohen; Huib F. Henrichs; Oleg Kochukhov; J. D. Landstreet; Nadine Manset; F. Martins; S. Mathis; M. E. Oksala; Stanley P. Owocki; Th. Rivinius; M. Shultz; J. O. Sundqvist; R. H. D. Townsend; Asif ud-Doula; J.-C. Bouret; J. Braithwaite; Maryline Briquet; Alex C. Carciofi; A. David-Uraz; C. P. Folsom; A. W. Fullerton; B. Leroy; W. L. F. Marcolino
The Magnetism in Massive Stars (MiMeS) survey represents a highprecision systematic search for magnetic fields in hot, massive OB stars. To date, MiMeS Large Programs (ESPaDOnS@CFHT, Narval@TBL, [email protected]) and associated PI programs (FORS@VLT) have yielded nearly 1200 circular spectropolarimetric observations of over 350 OB stars. Within this sample, 20 stars are detected as magnetic. Follow-up observations of new detections reveals (i) a large diversity of magnetic properties, (ii) ubiquitous evidence for magnetic wind confinement in optical spectra of all magnetic O stars, and (iii) the presence of strong, organized magnetic fields in all known Galactic Of?p stars, and iv) a complete absence of magnetic fields in classical Be stars.
Monthly Notices of the Royal Astronomical Society | 2005
R. H. D. Townsend
This paper explores the effect of rotation on the κ-mechanism instability of slowly pulsating B stars. A new non-adiabatic code, which adopts the so-called traditional approximation to treat the Coriolis force, is used to investigate the influence exerted by rotation over the stability of stellar models covering the mass range 2.5 M ○. ≤ M * ≤ 13.0 M ○. . The principal finding is that, for all modes considered apart from the prograde sectoral (PS) class, rotation shifts the κ-mechanism instability toward higher luminosities and effective temperatures; these shifts are accompanied by broadenings in the extent of instability strips. Such behaviour is traced to the shortening of mode periods under the action of the Coriolis force. Instability strips associated with PS modes behave rather differently, being shifted to marginally lower luminosities and effective temperatures under the influence of rotation. The implications of these results are discussed in the context of the observational scarcity of pulsation in B-type stars having significant rotation; various scenarios are explored to explain the apparent dichotomy between theory and observations. Furthermore, the possible significance of the findings to Be stars is briefly examined.
The Astrophysical Journal | 2006
Asif ud-Doula; R. H. D. Townsend; Stanley P. Owocki
We present two-dimensional MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the stars rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value) and also a large magnetic confinement parameter, η* ≡ BR/V∞ = 600. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outward. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back onto the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outward, leading to the episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly 108 K, high enough to emit hard (several keV) X-rays. Such centrifugal mass ejection represents a novel mechanism for driving magnetic reconnection and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like σ Ori E.