Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley P. Owocki is active.

Publication


Featured researches published by Stanley P. Owocki.


The Astrophysical Journal | 1988

Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model

Stanley P. Owocki; J. I. Castor; George B. Rybicki

Numerical radiation-hydrodynamics simulations of the nonlinear evolution of instabilities in radiatively driven stellar winds have been performed. The results show a strong tendency for the unstable flow to form rather sharp rarefactions in which the highest speed material has very low density. The qualitative features of the model agree well with the reqirements of displaced narrow absorption components in UV lines. 56 references.


The Astrophysical Journal | 2002

Dynamical Simulations of Magnetically Channeled Line-driven Stellar Winds. I. Isothermal, Nonrotating, Radially Driven Flow

Asif ud-Doula; Stanley P. Owocki

We present numerical magnetohydrodynamic (MHD) simulations of the effect of stellar dipole magnetic fields on line-driven wind outflows from hot, luminous stars. Unlike previous fixed-field analyses, the simulations here take full account of the dynamical competition between field and flow and thus apply to a full range of magnetic field strength and within both closed and open magnetic topologies. A key result is that the overall degree to which the wind is influenced by the field depends largely on a single, dimensionless wind magnetic confinement parameter η* (= BR/v∞), which characterizes the ratio between magnetic field energy density and kinetic energy density of the wind. For weak confinement, η* ≤ 1, the field is fully opened by the wind outflow, but nonetheless, for confinements as small as η* = 1/10 it can have a significant back-influence in enhancing the density and reducing the flow speed near the magnetic equator. For stronger confinement, η* > 1, the magnetic field remains closed over a limited range of latitude and height about the equatorial surface, but eventually is opened into a nearly radial configuration at large radii. Within closed loops, the flow is channeled toward loop tops into shock collisions that are strong enough to produce hard X-rays, with the stagnated material then pulled by gravity back onto the star in quite complex and variable inflow patterns. Within open field flow, the equatorial channeling leads to oblique shocks that are again strong enough to produce X-rays and also lead to a thin, dense, slowly outflowing disk at the magnetic equator. The polar flow is characterized by a faster-than-radial expansion that is more gradual than anticipated in previous one-dimensional flow tube analyses and leads to a much more modest increase in terminal speed (less than 30%), consistent with observational constraints. Overall, the results here provide a dynamical groundwork for interpreting many types of observations—e.g., UV line profile variability, redshifted absorption or emission features, enhanced density-squared emission, and X-ray emission—that might be associated with perturbation of hot-star winds by surface magnetic fields.


The Astrophysical Journal | 2006

On the role of continuum-driven eruptions in the evolution of very massive stars and Population III stars

Nathan Smith; Stanley P. Owocki

We suggest that the mass lost during the evolution of very massive stars may be dominated by optically thick, continuum-driven outbursts or explosions, instead of by steady line-driven winds. In order for a massive star to become a Wolf-Rayet star, it must shed its hydrogen envelope, but new estimates of the effects of clumping in winds from O-type stars indicate that line driving is vastly insufficient. We discuss massive stars above roughly 40-50 M☉, which do not become red supergiants and for which the best alternative is mass loss during brief eruptions of luminous blue variables (LBVs). Our clearest example of this phenomenon is the 19th century outburst of η Carinae, when the star shed 12-20 M☉ or more in less than a decade. Other examples are circumstellar nebulae of LBVs and LBV candidates, extragalactic η Car analogs (the so-called supernova impostors), and massive shells around supernovae and gamma-ray bursters. We do not yet fully understand what triggers LBV outbursts or what supplies their energy, but they occur nonetheless, and they present a fundamental mystery in stellar astrophysics. Since line opacity from metals becomes too saturated, the extreme mass loss probably arises from a continuum-driven wind or a hydrodynamic explosion, both of which are insensitive to metallicity. As such, eruptive mass loss could have played a pivotal role in the evolution and ultimate fate of massive metal-poor stars in the early universe. If they occur in these Population III stars, such eruptions would also profoundly affect the chemical yield and types of remnants from early supernovae and hypernovae thought to be the origin of long gamma-ray bursts.


Monthly Notices of the Royal Astronomical Society | 2004

Be‐star rotation: how close to critical?

R. H. D. Townsend; Stanley P. Owocki; Ian D. Howarth

We argue that, in general, observational studies of Be-star rotation have paid insufficient attention to the effects of equatorial gravity darkening. We present new line-profile calculations that emphasize the insensitivity of line width to rotation for fast rotators. Coupled with a critical review of observational procedures, these calculations suggest that the observational parameter v sin i may systematically underestimate the true projected equatorial rotation velocity, v e sin i, by some tens of per cent for rapid rotators. A crucial implication of this work is that Be stars may be rotating much closer to their critical velocities than is generally supposed, bringing a range of new processes into contention for the elusive physical mechanism responsible for the circumstellar disc thought to be central to the Be phenomenon.


The Astrophysical Journal | 2005

Chandra HETGS Multiphase Spectroscopy Of The Young Magnetic O Star Theta(1) Orionis C

Marc Gagne; M. E. Oksala; David H. Cohen; Stephanie Tonnesen; Asif ud-Doula; Stanley P. Owocki; R. H. D. Townsend; J. J. MacFarlane

We report on four Chandra grating observations of the oblique magnetic rotator � 1 Ori C (O5.5 V), covering a wide range of viewing angles with respect to the star’s 1060 G dipole magnetic field. We employ line-width and centroid analyses to study the dynamics of the X-ray–emitting plasma in the circumstellar environment, as well as line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature distribution and abundances of the very hotplasma. We investigate these diagnostics as a function of viewing angle andanalyzetheminconjunctionwithnewMHDsimulationsofthemagneticallychanneledwindshockmechanism on � 1 Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of the X-ray–emitting plasma with rotation phase. Subject headingg stars: early-type — stars: individual (HD 37022) — stars: magnetic fields — stars: mass loss — stars: rotation — stars: winds, outflows — X-rays: stars Online material: color figure


The Astrophysical Journal | 1996

Inhibition of Wind-Compressed Disk Formation by Nonradial Line Forces in Rotating Hot-Star Winds

Stanley P. Owocki; Steven R. Cranmer; Kenneth G. Gayley

We investigate the effects of nonradial line forces on the formation of a wind-compressed disk (WCD) around a rapidly rotating B star. Such nonradial forces can arise both from asymmetries in the line resonances in the rotating wind and from rotational distortion of the stellar surface. They characteristically include a latitudinal force component directed away from the equator and an azimuthal force component acting against the sense of rotation. Here we present results from radiation-hydrodynamical simulations showing that these nonradial forces can lead to an effective suppression of the equatorward flow needed to form a WCD as well as a modest (~20%) spin-down of the wind rotation. Furthermore, contrary to previous expectations that the wind mass flux should be enhanced by the reduced effective gravity near the equator, we show here that gravity darkening effects can actually lead to a reduced mass loss, and thus lower density, in the wind from the equatorial region. Overall, the results here thus imply a flow configuration that is markedly different from that derived in previous models of winds from rotating early-type stars. In particular, a major conclusion is that equatorial wind compression effects should be effectively suppressed in any radiatively driven stellar wind for which, as in the usual CAK formalism, the driving includes a significant component from optically thick lines. This presents a serious challenge to the WCD paradigm as an explanation for disk formation around Be and other rapidly rotating hot stars thought to have CAK-type, line-driven winds.


The Astrophysical Journal | 1997

Sudden Radiative Braking in Colliding Hot-Star Winds

Kenneth G. Gayley; Stanley P. Owocki; Steven R. Cranmer

Hot, massive stars have strong stellar winds, and in hot-star binaries these winds can undergo violent collision. Because such winds are thought to be radiatively driven, radiative forces may also play an important role in moderating the wind collision. However, previous studies have been limited to considering how such forces may inhibit the initial acceleration of the companion stellar wind. In this paper we analyze the role of an even stronger radiative braking effect, whereby the primary wind is rather suddenly decelerated by the radiative momentum flux it encounters as it approaches a bright companion. We further show that the braking location and velocity law along the line of centers between the stars can be approximated analytically using a simple one-dimensional analysis. The results of this analysis agree well with a detailed two-dimensional hydrodynamical simulation of the wind collision in the WR + O binary V444 Cygni and demonstrate that radiative braking can significantly alter the bow-shock geometry and reduce the strength of the wind collision. We then apply the derived analytic theory to a set of 14 hot-star binary systems, and conclude that radiative braking is likely to be of widespread importance for wind-wind collisions in WR + O binaries with close to medium separation, D 100 R?. It may also be important in other types of hot-star binaries that exhibit a large imbalance between the component wind strengths.


Monthly Notices of the Royal Astronomical Society | 2009

Dynamical simulations of magnetically channelled line‐driven stellar winds – III. Angular momentum loss and rotational spin‐down

Asif ud-Doula; Stanley P. Owocki; R. H. D. Townsend

We examine the angular momentum loss and associated rotational spin-down for magnetic hot stars with a line-driven stellar wind and a rotation-aligned dipole magnetic field. Our analysis here is based on our previous two-dimensional numerical magnetohydrodynamics simulation study that examines the interplay among wind, field and rotation as a function of two dimensionless parameters: one characterizing the wind magnetic confinement () and the other the ratio (W≡Vrot/Vorb) of stellar rotation to critical (orbital) speed. We compare and contrast the two-dimensional, time-variable angular momentum loss of this dipole model of a hot-star wind with the classical one-dimensional steady-state analysis by Weber and Davis (WD), who used an idealized monopole field to model the angular momentum loss in the solar wind. Despite the differences, we find that the total angular momentum loss averaged over both solid angle and time closely follows the general WD scaling , where is the mass-loss rate, Ω is the stellar angular velocity and RA is a characteristic Alfven radius. However, a key distinction here is that for a dipole field, this Alfven radius has a strong-field scaling RA/R*≈η1/4*, instead of the scaling for a monopole field. This leads to a slower stellar spin-down time that in the dipole case scales as , where is the characteristic mass loss time and k is the dimensionless factor for stellar moment of inertia. The full numerical scaling relation that we cite gives typical spin-down times of the order of 1 Myr for several known magnetic massive stars.


Monthly Notices of the Royal Astronomical Society | 2013

A magnetic confinement versus rotation classification of massive-star magnetospheres

V. Petit; Stanley P. Owocki; G. A. Wade; David H. Cohen; Jon O. Sundqvist; M. Cagné; J. Maíz Apellániz; M. E. Oksala; David A. Bohlender; Thomas Rivinius; Huib F. Henrichs; E. Alecian; R. H. D. Townsend; Asif ud-Doula

Building on results from the Magnetism in Massive Stars (MiMeS) project, this paper shows how a two-parameter classification of massive-star magnetospheres in terms of the magnetic wind confinement (which sets the Alfv´ en radius RA) and stellar rotation (which sets the Kepler co-rotation radius RK) provides a useful organization of both observational signatures and theoretical predictions. We compile the first comprehensive study of inferred and observed values for relevant stellar and magnetic parameters of 64 confirmed magnetic OB stars with Teff 16 kK. Using these parameters, we locate the stars in the magnetic confinement–rotation diagram, a log–log plot of RK versus RA. This diagram can be subdivided into regimes of centrifugal magnetospheres (CM), with RA > RK ,v ersusdynamical magnetospheres (DM), with RK > RA. We show how key observational diagnostics, like the presence and characteristics of Hα emission, depend on a star’s position within the diagram, as well as other parameters, especially the expected wind mass-loss rates. In particular, we identify two distinct populations of magnetic stars with Hα emission: namely, slowly rotating O-type stars with narrow emission consistent with a DM, and more rapidly rotating B-type stars with broader emission associated with a CM. For O-type stars, the high mass-loss rates are sufficient to accumulate enough material for line emission even within the relatively short free-fall time-scale associated with a DM: this high mass-loss rate also leads to a rapid magnetic spindown of the stellar rotation. For the B-type stars, the longer confinement of a CM is required to accumulate sufficient emitting material from their relatively weak winds, which also lead to much longer spindown time-scales. Finally, we discuss how other observational diagnostics, e.g. variability of UV wind lines or X-ray emission, relate to the inferred magnetic properties of these stars, and summarize prospects for future developments in our understanding of massive-star magnetospheres.


The Astrophysical Journal | 1983

The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona

Stanley P. Owocki; J. D. Scudder

Analytic expressions are derived for ionization and recombination rates in a parameterized non-Maxwellian electron velocity distribution with an enhanced high-energy tail. These expressions are then used in investigating the effect of such an enhancement in the high-energy tail of the coronal electron velocity distribution on the oxygen and iron ionization balances, O(+6) - O(+7) and Fe(+11) - Fe(+12). Relative to a Maxwellian of the same mean electron energy, the degree of ionization allowed by such a distribution is found to be either unchanged or slightly decreased for iron but often substantially increased for oxygen. The greater sensitivity of oxygen ionization balance to the high-energy distribution tail derives from the higher oxygen ionization threshold energy. It is noted that the electron temperature inferred from a measurement of the oxygen ionization ratio, O(+6)/O(+7), could indeed overestimate the actual coronal electron temperature by nearly 10 to the 6th K if the coronal electron distribution is incorrectly assumed to be Maxwellian.

Collaboration


Dive into the Stanley P. Owocki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asif ud-Doula

Penn State Worthington Scranton

View shared research outputs
Top Co-Authors

Avatar

R. H. D. Townsend

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven R. Cranmer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

V. Petit

University of Delaware

View shared research outputs
Top Co-Authors

Avatar

Thomas I. Madura

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge