Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. J. Dwayne Miller is active.

Publication


Featured researches published by R. J. Dwayne Miller.


Science | 2006

Coherent Control of Retinal Isomerization in Bacteriorhodopsin

Valentyn I. Prokhorenko; Andrea M. Nagy; Stephen A. Waschuk; Leonid S. Brown; Robert R. Birge; R. J. Dwayne Miller

Optical control of the primary step of photoisomerization of the retinal molecule in bacteriorhodopsin from the all-trans to the 13-cis state was demonstrated under weak field conditions (where only 1 of 300 retinal molecules absorbs a photon during the excitation cycle) that are relevant to understanding biological processes. By modulating the phases and amplitudes of the spectral components in the photoexcitation pulse, we showed that the absolute quantity of 13-cis retinal formed upon excitation can be enhanced or suppressed by ±20% of the yield observed using a short transform-limited pulse having the same actinic energy. The shaped pulses were shown to be phase-sensitive at intensities too low to access different higher electronic states, and so these pulses apparently steer the isomerization through constructive and destructive interference effects, a mechanism supported by observed signatures of vibrational coherence. These results show that the wave properties of matter can be observed and even manipulated in a system as large and complex as a protein.


Journal of Applied Physics | 2002

Ultrafast electron optics: Propagation dynamics of femtosecond electron packets

Bradley J. Siwick; Jason R. Dwyer; Robert E. Jordan; R. J. Dwayne Miller

Time-resolved electron diffraction harbors great promise for resolving the fastest chemical processes with atomic level detail. The main obstacles to achieving this real-time view of a chemical reaction are associated with delivering short electron pulses with sufficient electron density to the sample. In this article, the propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. It is found that space-charge effects can broaden the electron pulse to many times its original length and generate many eV of kinetic energy bandwidth in only a few nanoseconds. There is excellent agreement between the N-body simulation and the mean-field model for both space-charge induced temporal and kinetic energy distribution broadening. The numerical simulation also shows that the redistribution of electrons inside the packet results in changes to the pulse envelope and the development of a spatially linear axia...


Proceedings of the National Academy of Sciences of the United States of America | 2008

Temperature dependence of the two-dimensional infrared spectrum of liquid H2O

Darren Kraemer; Michael L. Cowan; Alexander Paarmann; Nils Huse; Erik T. J. Nibbering; Thomas Elsaesser; R. J. Dwayne Miller

Two-dimensional infrared photon-echo measurements of the OH stretching vibration in liquid H2O are performed at various temperatures. Spectral diffusion and resonant energy transfer occur on a time scale much shorter than the average hydrogen bond lifetime of ≈1 ps. Room temperature measurements show a loss of frequency and, thus, structural correlations on a 50-fs time scale. Weakly hydrogen-bonded OH stretching oscillators absorbing at high frequencies undergo slower spectral diffusion than strongly bonded oscillators. In the temperature range from 340 to 274 K, the loss in memory slows down with decreasing temperature. At 274 K, frequency correlations in the OH stretch vibration persist beyond ≈200 fs, pointing to a reduction in dephasing by librational excitations. Polarization-resolved pump-probe studies give a resonant intermolecular energy transfer time of 80 fs, which is unaffected by temperature. At low temperature, structural correlations persist longer than the energy transfer time, suggesting a delocalization of OH stretching excitations over several water molecules.


Journal of Applied Physics | 1982

Optical generation of tunable ultrasonic waves

Keith A. Nelson; R. J. Dwayne Miller; D. R. Lutz; M. D. Fayer

A convenient method of optically exciting and monitoring coherent acoustic waves in transparent or light‐absorbing liquids and solids is described. The acoustic frequency is easily and continuously tunable from ≊3 MHz to at least 30 GHz with our experimental apparatus and in principle over a considerably wider range. In anisotropic materials any propagation direction can be selected. The optically generated acoustic waves can be optically amplified, cancelled, or phase shifted.


Nature | 2010

Snapshots of cooperative atomic motions in the optical suppression of charge density waves

Maximilian Eichberger; Hanjo Schäfer; Marina Krumova; Markus Beyer; J. Demsar; Helmuth Berger; Gustavo Moriena; Germán Sciaini; R. J. Dwayne Miller

Macroscopic quantum phenomena such as high-temperature superconductivity, colossal magnetoresistance, ferrimagnetism and ferromagnetism arise from a delicate balance of different interactions among electrons, phonons and spins on the nanoscale. The study of the interplay among these various degrees of freedom in strongly coupled electron–lattice systems is thus crucial to their understanding and for optimizing their properties. Charge-density-wave (CDW) materials, with their inherent modulation of the electron density and associated periodic lattice distortion, represent ideal model systems for the study of such highly cooperative phenomena. With femtosecond time-resolved techniques, it is possible to observe these interactions directly by abruptly perturbing the electronic distribution while keeping track of energy relaxation pathways and coupling strengths among the different subsystems. Numerous time-resolved experiments have been performed on CDWs, probing the dynamics of the electronic subsystem. However, the dynamics of the periodic lattice distortion have been only indirectly inferred. Here we provide direct atomic-level information on the structural dynamics by using femtosecond electron diffraction to study the quasi two-dimensional CDW system 1T-TaS2. Effectively, we have directly observed the atomic motions that result from the optically induced change in the electronic spatial distribution. The periodic lattice distortion, which has an amplitude of ∼0.1 Å, is suppressed by about 20% on a timescale (∼250 femtoseconds) comparable to half the period of the corresponding collective mode. These highly cooperative, electronically driven atomic motions are accompanied by a rapid electron–phonon energy transfer (∼350 femtoseconds) and are followed by fast recovery of the CDW (∼4 picoseconds). The degree of cooperativity in the observed structural dynamics is remarkable and illustrates the importance of obtaining atomic-level perspectives of the processes directing the physics of strongly correlated systems.


Science | 2009

The Formation of Warm Dense Matter : Experimental Evidence for Electronic Bond Hardening in Gold

Ralph Ernstorfer; Maher Harb; Christoph T. Hebeisen; Germán Sciaini; Thibault Dartigalongue; R. J. Dwayne Miller

Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.


Journal of Chemical Physics | 1982

Laser‐induced excited state and ultrasonic wave gratings: Amplitude and phase grating contributions to diffraction

Keith A. Nelson; Roger Casalegno; R. J. Dwayne Miller; M. D. Fayer

A detailed analysis of diffraction from laser‐induced gratings is presented. The changes which occur in both the real and imaginary parts of the index of refraction are accounted for when excited states are created. These lead to phase and amplitude grating contributions, respectively, to the diffraction from a laser‐induced excited state grating. Experimental confirmation of the predicted wavelength dependence of these contributions is presented. Diffraction from laser‐induced excited state gratings, ultrasonic wave gratings, and mixed excited state and acoustic gratings is analyzed with the phase and amplitude contributions to each accounted for. The results permit the interpretation of mixed grating data and predict conditions under which density‐dependent absorption spectral shifts and excited state‐phonon interactions can be measured.


Nature | 2009

Electronic acceleration of atomic motions and disordering in bismuth.

Germán Sciaini; Maher Harb; Sergei G. Kruglik; T. Payer; Christoph T. Hebeisen; Frank-J. Meyer zu Heringdorf; Mariko Yamaguchi; Michael Horn-von Hoegen; Ralph Ernstorfer; R. J. Dwayne Miller

The development of X-ray and electron diffraction methods with ultrahigh time resolution has made it possible to map directly, at the atomic level, structural changes in solids induced by laser excitation. This has resulted in unprecedented insights into the lattice dynamics of solids undergoing phase transitions. In aluminium, for example, femtosecond optical excitation hardly affects the potential energy surface of the lattice; instead, melting of the material is governed by the transfer of thermal energy between the excited electrons and the initially cold lattice. In semiconductors, in contrast, exciting ∼10 per cent of the valence electrons results in non-thermal lattice collapse owing to the antibonding character of the conduction band. These different material responses raise the intriguing question of how Peierls-distorted systems such as bismuth will respond to strong excitations. The evolution of the atomic configuration of bismuth upon excitation of its A1g lattice mode, which involves damped oscillations of atoms along the direction of the Peierls distortion of the crystal, has been probed, but the actual melting of the material has not yet been investigated. Here we present a femtosecond electron diffraction study of the structural changes in crystalline bismuth as it undergoes laser-induced melting. We find that the dynamics of the phase transition depend strongly on the excitation intensity, with melting occurring within 190 fs (that is, within half a period of the unperturbed A1g lattice mode) at the highest excitation. We attribute the surprising speed of the melting process to laser-induced changes in the potential energy surface of the lattice, which result in strong acceleration of the atoms along the longitudinal direction of the lattice and efficient coupling of this motion to an unstable transverse vibrational mode. That is, the atomic motions in crystalline bismuth can be electronically accelerated so that the solid-to-liquid phase transition occurs on a sub-vibrational timescale.


Nature | 2013

Mapping molecular motions leading to charge delocalization with ultrabright electrons.

Meng Gao; Cheng Lu; Hubert Jean-Ruel; Lai Chung Liu; Alexander Marx; Ken Onda; Shin-ya Koshihara; Yoshiaki Nakano; Xiangfeng Shao; Takaaki Hiramatsu; Gunzi Saito; Hideki Yamochi; Ryan R. Cooney; Gustavo Moriena; Germán Sciaini; R. J. Dwayne Miller

Ultrafast processes can now be studied with the combined atomic spatial resolution of diffraction methods and the temporal resolution of femtosecond optical spectroscopy by using femtosecond pulses of electrons or hard X-rays as structural probes. However, it is challenging to apply these methods to organic materials, which have weak scattering centres, thermal lability, and poor heat conduction. These characteristics mean that the source needs to be extremely bright to enable us to obtain high-quality diffraction data before cumulative heating effects from the laser excitation either degrade the sample or mask the structural dynamics. Here we show that a recently developed, ultrabright femtosecond electron source makes it possible to monitor the molecular motions in the organic salt (EDO-TTF)2PF6 as it undergoes its photo-induced insulator-to-metal phase transition. After the ultrafast laser excitation, we record time-delayed diffraction patterns that allow us to identify hundreds of Bragg reflections with which to map the structural evolution of the system. The data and supporting model calculations indicate the formation of a transient intermediate structure in the early stage of charge delocalization (less than five picoseconds), and reveal that the molecular motions driving its formation are distinct from those that, assisted by thermal relaxation, convert the system into a metallic state on the hundred-picosecond timescale. These findings establish the potential of ultrabright femtosecond electron sources for probing the primary processes governing structural dynamics with atomic resolution in labile systems relevant to chemistry and biology.


Science | 2014

Femtosecond Crystallography with Ultrabright Electrons and X-rays: Capturing Chemistry in Action

R. J. Dwayne Miller

With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.

Collaboration


Dive into the R. J. Dwayne Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge