Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph Ernstorfer is active.

Publication


Featured researches published by Ralph Ernstorfer.


Science | 2010

Delay in Photoemission

Martin Schultze; Markus Fieß; Nicholas Karpowicz; Justin Gagnon; Michael Korbman; Michael Hofstetter; Stefan Neppl; Adrian L. Cavalieri; Yannis Komninos; Theodoros Mercouris; Cleanthes A. Nicolaides; Renate Pazourek; Stefan Nagele; Johannes Feist; Joachim Burgdörfer; Abdallah M. Azzeer; Ralph Ernstorfer; Reinhard Kienberger; Ulf Kleineberg; Eleftherios Goulielmakis; Ferenc Krausz; Vladislav S. Yakovlev

Defining Time-Zero When a high-energy photon hits an atom and is absorbed, the result can be the excitation and emission of an electron. This photoemission, or photoelectric effect, is generally assumed to occur instantaneously, and represents the definition of “time-zero” in clocking such ultrafast events. Schultze et al. (p. 1658, see the cover; see the Perspective by van der Hart) use ultrafast spectroscopy, with light pulses on the time scale of several tens of attoseconds, to test this assumption directly. They excite neon atoms with 100 eV photons and find that there is a small (20-attosecond) time delay between the emission of electrons from the 2s and 2p orbitals of the atoms. These results should have implications in modeling electron dynamics occurring on ultrafast time scales. Ultrafast metrology reveals a 20-attosecond delay between photoemission from different electronic orbitals in neon atoms. Photoemission from atoms is assumed to occur instantly in response to incident radiation and provides the basis for setting the zero of time in clocking atomic-scale electron motion. We used attosecond metrology to reveal a delay of 21±5 attoseconds in the emission of electrons liberated from the 2p orbitals of neon atoms with respect to those released from the 2s orbital by the same 100–electron volt light pulse. Small differences in the timing of photoemission from different quantum states provide a probe for modeling many-electron dynamics. Theoretical models refined with the help of attosecond timing metrology may provide insight into electron correlations and allow the setting of the zero of time in atomic-scale chronoscopy with a precision of a few attoseconds.


Nature | 2012

Optical-field-induced current in dielectrics

Agustin Schiffrin; Tim Paasch-Colberg; Nicholas Karpowicz; Vadym Apalkov; Daniel Gerster; Sascha Mühlbrandt; Michael Korbman; Joachim Reichert; Martin Schultze; Simon Holzner; Johannes V. Barth; Reinhard Kienberger; Ralph Ernstorfer; Vladislav S. Yakovlev; Mark I. Stockman; Ferenc Krausz

The time it takes to switch on and off electric current determines the rate at which signals can be processed and sampled in modern information technology. Field-effect transistors are able to control currents at frequencies of the order of or higher than 100 gigahertz, but electric interconnects may hamper progress towards reaching the terahertz (1012 hertz) range. All-optical injection of currents through interfering photoexcitation pathways or photoconductive switching of terahertz transients has made it possible to control electric current on a subpicosecond timescale in semiconductors. Insulators have been deemed unsuitable for both methods, because of the need for either ultraviolet light or strong fields, which induce slow damage or ultrafast breakdown, respectively. Here we report the feasibility of electric signal manipulation in a dielectric. A few-cycle optical waveform reversibly increases—free from breakdown—the a.c. conductivity of amorphous silicon dioxide (fused silica) by more than 18 orders of magnitude within 1 femtosecond, allowing electric currents to be driven, directed and switched by the instantaneous light field. Our work opens the way to extending electronic signal processing and high-speed metrology into the petahertz (1015 hertz) domain.


Journal of Chemical Theory and Computation | 2006

Quantum Chemical Calculations of the Influence of Anchor-Cum-Spacer Groups on Femtosecond Electron Transfer Times in Dye-Sensitized Semiconductor Nanocrystals

Petter Persson; Maria J. Lundqvist; Ralph Ernstorfer; William A. Goddard; F. Willig

Electronic properties of dye-sensitized semiconductor nanocrystals, consisting of perylene (Pe) chromophores attached to 2 nm TiO2 nanocrystals via different anchor-cum-spacer groups, have been studied theoretically using density functional theory (DFT) cluster calculations. Approximate effective electronic coupling strengths for the heterogeneous electron-transfer interaction have been extracted from the calculated electronic structures and are used to estimate femtosecond electron-transfer times theoretically. Results are presented for perylenes attached to the TiO2 via formic acid (Pe-COOH), propionic acid (Pe-CH2-CH2-COOH), and acrylic acid (Pe-CH [Formula: see text] CH-COOH). The calculated electron transfer times are between 5 and 10 fs with the formic acid and the conjugated acrylic acid bridges and about 35 fs with the saturated propionic acid bridge. The calculated electron injection times are of the same order of magnitude as the corresponding experimental values and qualitatively follow the experimental trend with respect to the influence of the different substitutions on the injection times.


Science | 2009

The Formation of Warm Dense Matter : Experimental Evidence for Electronic Bond Hardening in Gold

Ralph Ernstorfer; Maher Harb; Christoph T. Hebeisen; Germán Sciaini; Thibault Dartigalongue; R. J. Dwayne Miller

Under strong optical excitation conditions, it is possible to create highly nonequilibrium states of matter. The nuclear response is determined by the rate of energy transfer from the excited electrons to the nuclei and the instantaneous effect of change in electron distribution on the interatomic potential energy landscape. We used femtosecond electron diffraction to follow the structural evolution of strongly excited gold under these transient electronic conditions. Generally, materials become softer with excitation. In contrast, the rate of disordering of the gold lattice is found to be retarded at excitation levels up to 2.85 megajoules per kilogram with respect to the degree of lattice heating, which is indicative of increased lattice stability at high effective electronic temperatures, a predicted effect that illustrates the strong correlation between electronic structure and lattice bonding.


Nature | 2009

Electronic acceleration of atomic motions and disordering in bismuth.

Germán Sciaini; Maher Harb; Sergei G. Kruglik; T. Payer; Christoph T. Hebeisen; Frank-J. Meyer zu Heringdorf; Mariko Yamaguchi; Michael Horn-von Hoegen; Ralph Ernstorfer; R. J. Dwayne Miller

The development of X-ray and electron diffraction methods with ultrahigh time resolution has made it possible to map directly, at the atomic level, structural changes in solids induced by laser excitation. This has resulted in unprecedented insights into the lattice dynamics of solids undergoing phase transitions. In aluminium, for example, femtosecond optical excitation hardly affects the potential energy surface of the lattice; instead, melting of the material is governed by the transfer of thermal energy between the excited electrons and the initially cold lattice. In semiconductors, in contrast, exciting ∼10 per cent of the valence electrons results in non-thermal lattice collapse owing to the antibonding character of the conduction band. These different material responses raise the intriguing question of how Peierls-distorted systems such as bismuth will respond to strong excitations. The evolution of the atomic configuration of bismuth upon excitation of its A1g lattice mode, which involves damped oscillations of atoms along the direction of the Peierls distortion of the crystal, has been probed, but the actual melting of the material has not yet been investigated. Here we present a femtosecond electron diffraction study of the structural changes in crystalline bismuth as it undergoes laser-induced melting. We find that the dynamics of the phase transition depend strongly on the excitation intensity, with melting occurring within 190 fs (that is, within half a period of the unperturbed A1g lattice mode) at the highest excitation. We attribute the surprising speed of the melting process to laser-induced changes in the potential energy surface of the lattice, which result in strong acceleration of the atoms along the longitudinal direction of the lattice and efficient coupling of this motion to an unstable transverse vibrational mode. That is, the atomic motions in crystalline bismuth can be electronically accelerated so that the solid-to-liquid phase transition occurs on a sub-vibrational timescale.


Philosophical Transactions of the Royal Society A | 2006

Femtosecond electron diffraction: ‘making the molecular movie’

Jason R. Dwyer; Christoph T. Hebeisen; Ralph Ernstorfer; Maher Harb; Vatche B Deyirmenjian; Robert E. Jordan; R. J. Dwayne Miller

Femtosecond electron diffraction (FED) has the potential to directly observe transition state processes. The relevant motions for this barrier-crossing event occur on the hundred femtosecond time-scale. Recent advances in the development of high-flux electron pulse sources with the required time resolution and sensitivity to capture barrier-crossing processes are described in the context of attaining atomic level details of such structural dynamics—seeing chemical events as they occur. Initial work focused on the ordered-to-disordered phase transition of Al under strong driving conditions for which melting takes on nm or molecular scale dimensions. This work has been extended to Au, which clearly shows a separation in time-scales for lattice heating and melting. It also demonstrates that superheated face-centred cubic (FCC) metals melt through thermal mechanisms involving homogeneous nucleation to propagate the disordering process. A new concept exploiting electron–electron correlation is introduced for pulse characterization and determination of t=0 to within 100 fs as well as for spatial manipulation of the electron beam. Laser-based methods are shown to provide further improvements in time resolution with respect to pulse characterization, absolute t=0 determination, and the potential for electron acceleration to energies optimal for time-resolved diffraction.


Optics Express | 2008

Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses.

Christoph T. Hebeisen; Germán Sciaini; Maher Harb; Ralph Ernstorfer; Thibault Dartigalongue; Sergei G. Kruglik; R J. Miller

Real time views of atomic motion can be achieved using electron pulses as structural probes. The requisite time resolution requires knowledge of both the electron pulse duration and the exact timing of the excitation pulse and the electron probe to within 10 - 100 fs accuracy. By using an intensity grating to enhance the pondermotive force, we are now able to fully characterize electron pulses and to confirm many body simulations with laser pulse energies on the microjoule level. This development solves one of the last barriers to the highest possible time resolution for electron probes.


Nature Materials | 2015

Time-domain separation of optical properties from structural transitions in resonantly bonded materials

Lutz Waldecker; Timothy A. Miller; Miquel Rudé; Roman Bertoni; Johann Osmond; Valerio Pruneri; Robert E. Simpson; Ralph Ernstorfer; Simon Wall

The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.


Journal of Applied Physics | 2012

Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study

Alexander Paarmann; Max Gulde; Melanie Müller; Sascha Schäfer; Simon Schweda; Manisankar Maiti; Chundong Xu; Thorsten Hohage; F. Schenk; Claus Ropers; Ralph Ernstorfer

We numerically investigate the properties of coherent femtosecond single electron wave packets photoemitted from nanotips in view of their application in ultrafast electron diffraction and non-destructive imaging with low-energy electrons. For two different geometries, we analyze the temporal and spatial broadening during propagation from the needle emitter to an anode, identifying the experimental parameters and challenges for realizing femtosecond time resolution. The simple tip-anode geometry is most versatile and allows for electron pulses of several ten of femtosecond duration using a very compact experimental design, however, providing very limited control over the electron beam collimation. A more sophisticated geometry comprising a suppressor-extractor electrostatic unit and a lens, similar to typical field emission electron microscope optics, is also investigated, allowing full control over the beam parameters. Using such a design, we find ∼230 fs pulses feasible in a focused electron beam. The m...


Optics Letters | 2006

Femtosecond electron pulse characterization using laser ponderomotive scattering

Christoph T. Hebeisen; Ralph Ernstorfer; Maher Harb; Thibault Dartigalongue; Robert E. Jordan; R. J. Dwayne Miller

We demonstrate a method for the measurement of the instantaneous duration of femtosecond electron pulses using the ponderomotive force of an intense ultrashort laser pulse. An analysis procedure for the extraction of the electron pulse duration from the transient change of the transverse electron beam profile is proposed. The durations of the electron pulses generated in our setup were determined to be 410+/-30 fs.

Collaboration


Dive into the Ralph Ernstorfer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge