Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Jason Pitts is active.

Publication


Featured researches published by R. Jason Pitts.


Current Biology | 2007

Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae

Tan Lu; Yu Tong Qiu; Guirong Wang; Jae Young Kwon; Michael Rützler; Hyung Wook Kwon; R. Jason Pitts; Joop J. A. van Loon; Willem Takken; John R. Carlson; Laurence J. Zwiebel

BACKGROUND Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO(2)) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. RESULTS Here, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO(2)-responsive and characterized by the coexpression of three receptors that confer CO(2) responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses. CONCLUSIONS Our results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria.


PLOS Biology | 2010

Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito Anopheles gambiae

Chao Liu; R. Jason Pitts; Jonathan D. Bohbot; Patrick L. Jones; Guirong Wang; Laurence J. Zwiebel

A combination of gene silencing and behavioral studies in the malaria vector mosquito Anopheles gambiae sheds light on the olfactory basis of DEET repulsion as well as reveals the role of another family of chemosensory receptors that facilitate olfaction in An. gambiae.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae.

Yuanfeng Xia; Guirong Wang; Daniela L. Buscariollo; R. Jason Pitts; Heidi Wenger; Laurence J. Zwiebel

The mosquito Anopheles gambiae is the principal Afrotropical vector for human malaria. A central component of its vectorial capacity is the ability to maintain sufficient populations of adults. During both adult and preadult (larval) stages, the mosquitoes depend on the ability to recognize and respond to chemical cues that mediate feeding and survival. In this study, we used a behavioral assay to identify a range of odorant-specific responses of An. gambiae larvae that are dependent on the integrity of the larval antennae. Parallel molecular analyses have identified a subset of the An. gambiae odorant receptors (AgOrs) that are localized to discrete neurons within the larval antennae and facilitate odor-evoked responses in Xenopus oocytes that are consistent with the larval behavioral spectrum. These studies shed light on chemosensory-driven behaviors and represent molecular and cellular characterization of olfactory processes in mosquito larvae. These advances may ultimately enhance the development of vector control strategies, targeting olfactory pathways in larval-stage mosquitoes to reduce the catastrophic effects of malaria and other diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae

David C. Rinker; R. Jason Pitts; Xiaofan Zhou; Eunho Suh; Antonis Rokas; Laurence J. Zwiebel

Olfactory-driven behaviors are central to the lifecycle of the malaria vector mosquito Anopheles gambiae and are initiated by peripheral signaling in the antenna and other olfactory tissues. To continue gaining insight into the relationship between gene expression and olfaction, we have performed cohort comparisons of antennal transcript abundances at five time points after a blood meal, a key event in both reproduction and disease transmission cycles. We found that more than 5,000 transcripts displayed significant abundance differences, many of which were correlated by cluster analysis. Within the chemosensory gene families, we observed a general reduction in the level of chemosensory gene transcripts, although a subset of odorant receptors (AgOrs) was modestly enhanced in post–blood-fed samples. Integration of AgOr transcript abundance data with previously characterized AgOr excitatory odorant response profiles revealed potential changes in antennal odorant receptivity that coincided with the shift from host-seeking to oviposition behaviors in blood-fed female mosquitoes. Behavioral testing of ovipositing females to odorants highlighted by this synthetic analysis identified two unique, unitary oviposition cues for An. gambiae, 2-propylphenol and 4-methylcyclohexanol. We posit that modest, yet cumulative, alterations of AgOr transcript levels modulate peripheral odor coding resulting in biologically relevant behavioral effects. Moreover, these results demonstrate that highly quantitative, RNAseq transcript abundance data can be successfully integrated with functional data to generate testable hypotheses.


European Journal of Neuroscience | 2009

Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae

Guirong Wang; Yu T. Qiu; Tan Lu; Hyung-Wook Kwon; R. Jason Pitts; Joop J. A. van Loon; Willem Takken; Laurence J. Zwiebel

Heat sensitivity is a sensory modality that plays a critical role in close‐range host‐seeking behaviors of adult female Anopheles gambiae, the principal Afrotropical vector for human malaria. An essential step in this activity is the ability to discriminate and respond to increases in environmental temperature gradients through the process of peripheral thermoreception. Here, we report on the characterization of the anopheline homolog of the transient receptor potential (TRP) A1/ANKTM1 channel that is consistent with its role as a heat‐sensor in host‐seeking adult female mosquitoes. We identify a set of distal antennal sensory structures that specifically respond to temperature gradients and express AgTRPA1. Functional characterization of AgTRPA1 in Xenopus oocytes supports its role in the molecular transduction of temperature gradients in An. gambiae, providing a basis for targeting mosquito heat responses as a means toward reducing malaria transmission.


Malaria Journal | 2006

Antennal sensilla of two female anopheline sibling species with differing host ranges.

R. Jason Pitts; Laurence J. Zwiebel

BackgroundVolatile odors are important sensory inputs that shape the behaviour of insects, including agricultural pests and disease vectors. Anopheles gambiae s.s. is a highly anthropophilic mosquito and is the major vector for human malaria in sub-Sahara Africa, while Anopheles quadriannulatus, largely due to its zoophilic behaviour, is considered a non-vector species in the same region. Careful studies of olfaction in these sibling species may lead to insights about the mechanisms that drive host preference behaviour. In the present study, the external anatomy of the antenna, the principle olfactory organ in the female mosquito of both species, was examined as an initial step toward more detailed comparisons.MethodsScanning electron and light microscopy were used to examine the antennae ultrastructures of adult female An. gambiae s.s. and An. quadriannulatus. Sensory structures, called sensilla, were categorized and counted; their distributions are reported here as well as densities calculated for each species.ResultsBoth An. gambiae s.s. and An. quadriannulatus bear five classes of sensilla on their antennae: chaetica (bristles), trichodea (hairs), basiconica (pegs), coeloconica (pitted pegs), and ampullacea (pegs in tubes). Female An. quadriannulatus antennae have approximately one-third more sensilla, and a proportionally larger surface area, than female An. gambiae s.s. antennae.ConclusionThe same types of sensilla are found on the antennae of both species. While An. quadriannulatus has greater numbers of each sensilla type, sensilla densities are very similar for each species, suggesting that other factors may be more important to such olfactory-driven behaviours as host preference.


Chemical Senses | 2011

Conservation of Indole Responsive Odorant Receptors in Mosquitoes Reveals an Ancient Olfactory Trait

Jonathan D. Bohbot; Patrick L. Jones; Guirong Wang; R. Jason Pitts; Gregory M. Pask; Laurence J. Zwiebel

Aedes aegypti and Anopheles gambiae are among the best-characterized mosquito species within the Culicinae and Anophelinae mosquito clades which diverged ∼150 million years ago. Despite this evolutionary distance, the olfactory systems of these mosquitoes exhibit similar morphological and physiological adaptations. Paradoxically, mosquito odorant receptors, which lie at the heart of chemosensory signal transduction pathways, belong to a large and highly divergent gene family. We have used 2 heterologous expression systems to investigate the functional characteristics of a highly conserved subset of Ors between Ae. aegypti and An. gambiae to investigate whether protein homology correlates with odorant-induced activation. We find that these receptors share similar odorant response profiles and that indole, a common and ecologically relevant olfactory cue, elicits strong responses from these homologous receptors. The identification of other highly conserved members of this Or clade from mosquito species of varying phylogenetic relatedness supports a model in which high sensitivity to indole represents an ancient ecological adaptation that has been preserved as a result of its life cycle importance. These results provide an understanding of how similarities and disparities among homologous OR proteins relate to olfactory function, which can lead to greater insights into the design of successful strategies for the control of mosquito-borne diseases.


Acta Tropica | 2014

Review : Improving our knowledge of male mosquito biology in relation to genetic control programmes

Rosemary Susan Lees; Bart G. J. Knols; Romeo Bellini; Mark Q. Benedict; Ambicadutt Bheecarry; Hervé C. Bossin; Dave D. Chadee; J. D. Charlwood; Roch K. Dabiré; Luc Djogbénou; Alexander Egyir-Yawson; René Gato; Louis C. Gouagna; Mo’awia M. Hassan; Shakil Ahmed Khan; Lizette L. Koekemoer; Guy Lemperiere; Nicholas C. Manoukis; Raimondas Mozuraitis; R. Jason Pitts; Frédéric Simard; Jeremie R.L. Gilles

The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites or larviciding with insecticides thereof. However, these methods are under threat from, amongst other issues, the development of insecticide resistance and the practical difficulty of maintaining long-term community-wide efforts. The sterile insect technique (SIT), whose success hinges on having a good understanding of the biology and behaviour of the male mosquito, is an additional weapon in the limited arsenal against mosquito vectors. The successful production and release of sterile males, which is the mechanism of population suppression by SIT, relies on the release of mass-reared sterile males able to confer sterility in the target population by mating with wild females. A five year Joint FAO/IAEA Coordinated Research Project brought together researchers from around the world to investigate the pre-mating conditions of male mosquitoes (physiology and behaviour, resource acquisition and allocation, and dispersal), the mosquito mating systems and the contribution of molecular or chemical approaches to the understanding of male mosquito mating behaviour. A summary of the existing knowledge and the main novel findings of this group is reviewed here, and further presented in the reviews and research articles that form this Acta Tropica special issue.


PLOS ONE | 2014

Antennal-Expressed Ammonium Transporters in the Malaria Vector Mosquito Anopheles gambiae

R. Jason Pitts; Stephen L. Derryberry; Fadi E. Pulous; Laurence J. Zwiebel

The principal Afrotropical malaria vector mosquito, Anopheles gambiae remains a significant threat to human health. In this anthropophagic species, females detect and respond to a range of human-derived volatile kairomones such as ammonia, lactic acid, and other carboxylic acids in their quest for blood meals. While the molecular underpinnings of mosquito olfaction and host seeking are becoming better understood, many questions remain unanswered. In this study, we have identified and characterized two candidate ammonium transporter genes, AgAmt and AgRh50 that are expressed in the mosquito antenna and may contribute to physiological and behavioral responses to ammonia, which is an important host kairomone for vector mosquitoes. AgAmt transcripts are highly enhanced in female antennae while a splice variant of AgRh50 appears to be antennal-specific. Functional expression of AgAmt in Xenopus laevis oocytes facilitates inward currents in response to both ammonium and methylammonium, while AgRh50 is able to partially complement a yeast ammonium transporter mutant strain, validating their conserved roles as ammonium transporters. We present evidence to suggest that both AgAmt and AgRh50 are in vivo ammonium transporters that are important for ammonia sensitivity in An. gambiae antennae, either by clearing ammonia from the sensillar lymph or by facilitating sensory neuron responses to environmental exposure. Accordingly, AgAmt and AgRh50 represent new and potentially important targets for the development of novel vector control strategies.


Acta Tropica | 2014

The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes

R. Jason Pitts; Raimondas Mozūraitis; Anne Gauvin-Bialecki; Guy Lempérière

Despite decades of intensive study of the chemical ecology of female mosquitoes, relatively little is known about the chemical ecology of males. This short review summarizes the current state of knowledge of the chemicals that mediate male mosquito behaviour. Various trophic interactions including insect-plant, insect-host, and insect-insect responses are emphasized. The relevance of the chemical ecology of male mosquitoes in the context of vector control programmes is discussed.

Collaboration


Dive into the R. Jason Pitts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Nicole Fox

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. Bohbot

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tan Lu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Joop J. A. van Loon

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge