Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Jaspers is active.

Publication


Featured researches published by R. Jaspers.


Plasma Physics and Controlled Fusion | 2009

Thomson scattering system on the TEXTOR tokamak using a multi-pass laser beam configuration

M Yu Kantor; A. J. H. Donné; R. Jaspers; H.J. van der Meiden; Textor Team

The main challenge for the Thomson scattering (TS) diagnostic on the TEXTOR tokamak is the detailed study of fast plasma events at a high spatial resolution and a high repetition rate of the measurements. The diagnostic uses intra-cavity probing of the plasma with a repetitively pulsed ruby laser and a fast CMOS camera as detectors. Since 2004, the TS system on TEXTOR has been gradually and systematically enhanced for the measurements of fast plasma events. For that it has recently been upgraded to obtain a multi-pass configuration. Two spherical mirrors have been installed that force the laser beam to probe the plasma a specified number of times before it is directed back into the laser medium. The diagnostics with the upgraded probing system have achieved the measurement accuracy of 3% for the electron temperature and 1.5% for the electron density at <1 cm spatial resolution and 3 × 1019 m−3 plasma density and can measure at 5 kHz during an interval up to 8 ms. This makes it possible to detect, amongst others, fine structures of magnetic islands and variations of the edge pedestal in the ELMy limiter H-mode.


Nuclear Fusion | 2007

Tearing mode stabilization by electron cyclotron resonance heating demonstrated in the TEXTOR tokamak and the implication for ITER

E. Westerhof; A. Lazaros; E. Farshi; M. de Baar; M. F. M. de Bock; I. G. J. Classen; R. Jaspers; G. M. D. Hogeweij; H. R. Koslowski; A. Krämer-Flecken; Y. Liang; N.J. Lopes Cardozo; O. Zimmermann

Controlled experiments on the suppression of the m/n = 2/1 tearing mode with electron cyclotron heating and current drive in TEXTOR are reported. The mode was produced reproducibly by an externally applied rotating perturbation field, allowing a systematic study of its suppression. Heating inside the island of the mode is shown to be the dominant suppression mechanism in these experiments. An extrapolation of these findings to ITER indicates that the projected system for suppression of the tearing mode could be significantly more effective than present estimates indicate, which only consider the effect of the current drive but not of the heating inside the island.


Nuclear Fusion | 2008

The interaction between plasma rotation, stochastic fields and tearing mode excitation by external perturbation fields

M. F. M. de Bock; I. G. J. Classen; R. Jaspers; H. R. Koslowski; B. Unterberg

For fusion reactors, based on the principle of magnetic confinement, it is important to avoid so-called magnetic islands or tearing modes. They reduce confinement and can be the cause of major disruptions. One class of magnetic islands is that of the perturbation field driven modes. This perturbation field can, for example, be the intrinsic error field. Theoretical work predicts a strong relationship between plasma rotation and the excitation of perturbation field modes. Experimentally, the theory on mode excitation and plasma rotation has been confirmed on several tokamaks. In those experiments, however, the control over the plasma rotation velocity and direction, and over the externally applied perturbation field was limited. In this paper experiments are presented that were carried out at the TEXTOR tokamak. Two tangential neutral beam injectors and a set of helical perturbation coils, called the dynamic ergodic divertor (DED), provide control over both the plasma rotation and the external perturbation field in TEXTOR. This made it possible to set up a series of experiments to test the theory on mode excitation and plasma rotation in detail. The perturbation field induced by the DED not only excites magnetic islands, it also sets up a layer near the plasma boundary where the magnetic field is stochastic. It will be shown that this stochastic field alters both the rotational response of the plasma on the perturbation field and the threshold for mode excitation. It therefore has to be included in an extended theory on mode excitation.


Review of Scientific Instruments | 2001

A synchrotron radiation diagnostic to observe relativistic runaway electrons in a tokamak plasma

R. Jaspers; N.J. Lopes Cardozo; A. J. H. Donné; H. L. M. Widdershoven; K.H. Finken

In present day tokamaks runaway electrons can be confined long enough to gain energies in the order of several tens of megaelectron volts. At these energies synchrotron radiation is emitted in the infrared wavelength range which can easily be detected by thermographic cameras. The spectral features of this synchrotron radiation are reviewed. On TEXTOR-94 a diagnostic exploiting this synchrotron radiation has been developed and is presented here. It is shown how to deduce the runaway parameters like runaway energy, pitch angle, runaway current and beam radius from the measurements. Based on the experience at TEXTOR-94 the feasibility of a similar synchrotron diagnostic on the International Thermonuclear Experimental Reactor is discussed. The maximum emission is expected in the wavelength range from 1–5 μm. A beam of 10 MeV runaway electrons with a current of about 15 kA will already be detectable.


Nuclear Fusion | 1999

Overview of radiative improved mode results on TEXTOR-94

R.R. Weynants; A. Messiaen; J. Ongena; B. Unterberg; G. Bonheure; P. Dumortier; R. Jaspers; R. Koch; H. R. Koslowski; A. Krämer-Flecken; G. Mank; J. Rapp; M.Z. Tokar; G. Van Wassenhove; W. Biel; M. Brix; F. Durodié; G. Esser; K.H. Finken; G. Fuchs; B. Giesen; J. Hobirk; P. Hüttemann; M. Lehnen; A. Lyssoivan; Ph. Mertens; A. Pospieszczyk; U. Samm; M. Sauer; B. Schweer

The radiative improved (RI) mode is a tokamak regime offering many attractive reactor features. In the article, the RI mode of TEXTOR-94 is shown to follow the same scaling as the linear ohmic confinement regime and is thus identified as one of the most fundamental tokamak operational regimes. The current understanding derived from experiments and modelling of the conditions necessary for sustaining the mode is reviewed, as are the mechanisms leading to L-RI mode transition. The article discusses the compatibility of high impurity seeding with the low central power density of a burning reactor, as well as RI mode properties at and beyond the Greenwald density.


Review of Scientific Instruments | 2008

The next generation of electron cyclotron emission imaging diagnostics (invited)

P. Zhang; C. W. Domier; T. Liang; X. Kong; Benjamin Tobias; Z. Shen; N.C. Luhmann; Hae-Sim Park; I. G. J. Classen; M. J. van de Pol; A. J. H. Donné; R. Jaspers

A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T(e) profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.


Review of Scientific Instruments | 2006

Upgrades to the TEXTOR electron cyclotron emission imaging diagnostic

C. W. Domier; Z. Xia; P. Zhang; N.C. Luhmann; H. Park; E. Mazzucato; M. J. van de Pol; I. G. J. Classen; A. J. H. Donné; R. Jaspers

A 128 channel electron cyclotron emission imaging instrument has been routinely used to study magnetohydrodynamics physics such as m=1 and m=2 modes on the TEXTOR tokamak. As currently configured, each of the 16 mixer array elements measures plasma emission at 8 simultaneous frequencies to form a 16×8 image of electron temperature profiles and fluctuations over an area of 16cm (vertical) by 6cm (horizontal). A redesigned mixer array, coupled with new wideband electronics to be installed later this year, will increase the plasma coverage to 17cm(v)×9cm(h). The new arrangement offers increased temperature resolution together with new gain and video bandwidth controls in a highly modular configuration for ease of maintenance and facilitation of future upgrades both in frequency coverage as well as number of channels.


Physics of Plasmas | 1997

High confinement and high density with stationary plasma energy and strong edge radiation cooling in the upgraded Torus experiment for technology oriented research (TEXTOR-94)

A. Messiaen; J. Ongena; B. Unterberg; J.A. Boedo; G. Fuchs; R. Jaspers; L. Könen; H. R. Koslowski; G. Mank; J. Rapp; U. Samm; P.E. Vandenplas; G. Van Oost; G. Van Wassenhove; G. Waidmann; R.R. Weynants; G. H. Wolf; G. Bertschinger; G. Bonheure; M. Brix; P. Dumortier; F. Durodié; K. H. Finken; B. Giesen; D. Hillis; P. Hutteman; R. Koch; A. Krämer‐Flecken; A. Lyssoivan; Ph. Mertens

An overview of the results obtained so far for the radiative I-mode regime on the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94) [Proceedings of the 16th IEEE Symposium on Fusion Engineering (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), Vol. 1, p. 470] is given. This regime is obtained under quasistationary conditions with edge neon seeding in a pumped limiter tokamak with circular cross section. It combines high confinement and high β (up to a normalized beta, βn=2) with low edge q values (down to qa=2.8) and high density even above the Greenwald limit together with dominant edge radiative heat exhaust, and therefore shows promise for the future of fusion research. Bulk and edge properties of these discharges are described, and a detailed account is given of the energy and particle confinement and their scaling. Energy confinement scales linearly with density as for the nonsaturated Ohmic Neo-Alcator scaling, but the usual degradation with total power remains. No deleterious effects of the neon seeding on fusion reactivity and plasma stability have been observed.An overview of the results obtained so far for the radiative I-mode regime on the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94) [Proceedings of the 16th IEEE Symposium on Fusion Engineering (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1995), Vol. 1, p. 470] is given. This regime is obtained under quasistationary conditions with edge neon seeding in a pumped limiter tokamak with circular cross section. It combines high confinement and high β (up to a normalized beta, βn=2) with low edge q values (down to qa=2.8) and high density even above the Greenwald limit together with dominant edge radiative heat exhaust, and therefore shows promise for the future of fusion research. Bulk and edge properties of these discharges are described, and a detailed account is given of the energy and particle confinement and their scaling. Energy confinement scales linearly with density as for the nonsaturated Ohmic Neo-Alcator scaling, but the usual degradation with total power ...


Review of Scientific Instruments | 2009

Advancements in electron cyclotron emission imaging demonstrated by the TEXTOR ECEI diagnostic upgrade.

Benjamin Tobias; X. Kong; T. Liang; Alex Spear; C. W. Domier; N.C. Luhmann; I. G. J. Classen; J. E. Boom; M. J. van de Pol; R. Jaspers; A. J. H. Donné; H. Park; T. Munsat

A new TEXTOR electron cyclotron emission imaging system has been developed and employed, providing a diagnostic with new features and enhanced capabilities when compared to the legacy system it replaces. Optical coupling to the plasma has been completely redesigned, making use of new minilens arrays for reduced optical aberration and providing the new feature of vertical zoom, whereby the vertical coverage is now remotely adjustable on a shot-by-shot basis from 20-35 cm. Other innovations, such as the implementation of stacked quasioptical planar notch filters, allow for the diagnostic to be operated without interruption or degradation in performance during electron cyclotron resonance heating. Successful commissioning of the new diagnostic and a demonstration of the improved capabilities are presented in this paper, along with a discussion of the new technologies employed.


Nuclear Fusion | 2007

Influence of the dynamic ergodic divertor on transport properties in TEXTOR

K.H. Finken; B. Unterberg; Y. Xu; S.S. Abdullaev; M. Jakubowski; M. Lehnen; M. F. M. de Bock; S. Bozhenkov; S. Brezinsek; I. G. J. Classen; J. W. Coenen; D. Harting; M. von Hellermann; S. Jachmich; R. Jaspers; Y. Kikuchi; A. Krämer-Flecken; Y. Liang; M. Mitri; P. Peleman; A. Pospieszczyk; D. Reiser; D. Reiter; U. Samm; D. Schega; O. Schmitz; S. Soldatov; M. Van Schoor; M. Vergote; R.R. Weynants

Experiments to investigate transport properties under the influence of the dynamic ergodic divertor (DED) on TEXTOR are discussed. Relativistic runaway electrons are applied for studying transport properties of ergodization such as enhanced runaway loss. The ergodization causes an enhanced loss rate; this loss is higher for low relativistic electrons than for highly relativistic ones, in good agreement with particle orbit mapping. Edge transport can be controlled by the DED perturbation: in limiter H-mode plasmas ELM-like particle and heat bursts associated with the formation of enhanced edge pressure gradients are mitigated in the 6/2 configuration on the expense of a reduced pedestal height. Finally, the plasma is driven back to L-mode under the influence of the magnetic perturbation. In the 3/1 configuration the onset of tearing modes limits the possibility to affect edge transport. A mode of spontaneous density built-up has been found for the TEXTOR-DED as well. This mode is in particular strong for an inward shifted plasma; the built-up has a resonant character with respect to q(a). Langmuir probe measurements with two probe arrays show a strong influence of the magnetic ergodization on both the edge plasma equilibrium and fluctuation parameters. In particular, in the ergodic zone the turbulence properties and turbulence-driven flux are profoundly modified.

Collaboration


Dive into the R. Jaspers's collaboration.

Top Co-Authors

Avatar

B. Unterberg

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. R. Koslowski

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

K.H. Finken

European Atomic Energy Community

View shared research outputs
Top Co-Authors

Avatar

M. Lehnen

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

M. Jakubowski

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

U. Samm

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

W. Biel

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

A. Pospieszczyk

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Y. Liang

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge