Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. L. Keck is active.

Publication


Featured researches published by R. L. Keck.


Optics Communications | 1997

Initial performance results of the OMEGA laser system

T. R. Boehly; D. L. Brown; R. S. Craxton; R. L. Keck; J. P. Knauer; J. H. Kelly; T. J. Kessler; Steven A. Kumpan; S. J. Loucks; S. A. Letzring; F. J. Marshall; R. L. McCrory; S.F.B. Morse; W. Seka; J. M. Soures; C. P. Verdon

Abstract OMEGA is a 60-terawatt, 60-beam, frequency-tripled Nd:glass laser system designed to perform precision direct-drive inertial-confinement-fusion (ICF) experiments. The upgrade to the system, completed in April 1995, met or surpassed all technical requirements. The acceptance tests demonstrated exceptional performance throughout the system: high driver stability (


Physics of Plasmas | 1996

Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system

J. M. Soures; R. L. McCrory; C. P. Verdon; A. Babushkin; R. E. Bahr; T. R. Boehly; R. Boni; D. K. Bradley; D. L. Brown; R. S. Craxton; J. A. Delettrez; William R. Donaldson; R. Epstein; P. A. Jaanimagi; S.D Jacobs; K. Kearney; R. L. Keck; J. H. Kelly; Terrance J. Kessler; Robert L. Kremens; J. P. Knauer; S. A. Kumpan; S. A. Letzring; D.J Lonobile; S. J. Loucks; L. D. Lund; F. J. Marshall; P.W. McKenty; D. D. Meyerhofer; S.F.B. Morse

OMEGA, a 60‐beam, 351 nm, Nd:glass laser with an on‐target energy capability of more than 40 kJ, is a flexible facility that can be used for both direct‐ and indirect‐drive targets and is designed to ultimately achieve irradiation uniformity of 1% on direct‐drive capsules with shaped laser pulses (dynamic range ≳400:1). The OMEGA program for the next five years includes plasma physics experiments to investigate laser–matter interaction physics at temperatures, densities, and scale lengths approaching those of direct‐drive capsules designed for the 1.8 MJ National Ignition Facility (NIF); experiments to characterize and mitigate the deleterious effects of hydrodynamic instabilities; and implosion experiments with capsules that are hydrodynamically equivalent to high‐gain, direct‐drive capsules. Details are presented of the OMEGA direct‐drive experimental program and initial data from direct‐drive implosion experiments that have achieved the highest thermonuclear yield (1014 DT neutrons) and yield efficienc...


Physics of Plasmas | 2005

Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA

P. B. Radha; V.N. Goncharov; T.J.B. Collins; J. A. Delettrez; Y. Elbaz; V. Yu. Glebov; R. L. Keck; D. E. Keller; J. P. Knauer; J.A. Marozas; F. J. Marshall; P. W. McKenty; D. D. Meyerhofer; S. P. Regan; T. C. Sangster; D. Shvarts; S. Skupsky; Y. Srebro; R. P. J. Town; C. Stoeckl

Multidimensional hydrodynamic properties of high-adiabat direct-drive plastic-shell implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] are investigated using the multidimensional hydrodynamic code, DRACO [D. Keller et al., Bull. Am. Phys. Soc. 44, 37 (1999)]. Multimode simulations including the effects of nonuniform illumination and target roughness indicate that shell stability during the acceleration phase plays a critical role in determining target performance. For thick shells that remain integral during the acceleration phase, target yields are significantly reduced by the combination of the long-wavelength (l<10) modes due to surface roughness and beam imbalance and the intermediate modes (20⩽l⩽50) due to single-beam nonuniformities. The neutron-production rate for these thick shells truncates relative to one-dimensional (1D) predictions. The yield degradation in the thin shells is mainly due to shell breakup at short wavelengths (λ∼Δ, where Δ is the in-flight s...


Journal of The Optical Society of America B-optical Physics | 2000

Experimental investigation of smoothing by spectral dispersion

S. P. Regan; J.A. Marozas; J. H. Kelly; Thomas R. Boehly; William R. Donaldson; P. A. Jaanimagi; R. L. Keck; Terrance J. Kessler; D. D. Meyerhofer; W. Seka; S. Skupsky; V. A. Smalyuk

Measurements of smoothing rates for smoothing by spectral dispersion (SSD) of high-power, solid-state laser beams used for inertial confinement fusion (ICF) research are reported. Smoothing rates were obtained from the intensity distributions of equivalent target plane images for laser pulses of varying duration. Simulations of the experimental data with the known properties of the phase plates and the frequency modulators are in good agreement with the experimental data. These results inspire confidence in extrapolating to higher bandwidths and other SSD configurations that may be suitable for ICF experiments and ultimately for direct-drive laser-fusion ignition.


Physics of Plasmas | 2005

Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA

P. B. Radha; T.J.B. Collins; J. A. Delettrez; Y. Elbaz; R. Epstein; V. Yu. Glebov; V.N. Goncharov; R. L. Keck; J. P. Knauer; J.A. Marozas; F. J. Marshall; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; S. P. Regan; T. C. Sangster; W. Seka; D. Shvarts; S. Skupsky; Y. Srebro; C. Stoeckl

Direct-drive, plastic shells imploded on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] with a 1ns square pulse are simulated using the multidimensional hydrodynamic code DRACO in yield degradation in “thin” shells is primarily caused by shell breakup during the acceleration phase due to short-wavelength (l>50, where l is the Legendre mode number) perturbation growth, whereas “thick” shell performance is influenced primarily by long and intermediate modes (l⩽50). Simulation yields, temporal history of neutron production, areal densities, and x-ray images of the core compare well with experimental observations. In particular, the thin-shell neutron production history falls off less steeply than one-dimensional predictions due to shell-breakup-induced undercompression and delayed stagnation. Thicker, more-stable shells show burn truncation due to instability-induced mass flow into the colder bubbles. Estimates of small-scale mix indicate that turbulent mixing does not influence p...


Physics of Plasmas | 2001

Core performance and mix in direct-drive spherical implosions with high uniformity

D. D. Meyerhofer; J. A. Delettrez; R. Epstein; V. Yu. Glebov; V.N. Goncharov; R. L. Keck; R. L. McCrory; P.W. McKenty; F. J. Marshall; P. B. Radha; S. P. Regan; S. Roberts; W. Seka; S. Skupsky; V. A. Smalyuk; C. Sorce; C. Stoeckl; J. M. Soures; R. P. J. Town; B. Yaakobi; Jonathan D. Zuegel; J. A. Frenje; C. K. Li; R. D. Petrasso; F. H. Séguin; Kurtis A. Fletcher; Stephen Padalino; C. Freeman; N. Izumi; R. A. Lerche

The performance of gas-filled, plastic-shell implosions has significantly improved with advances in on-target uniformity on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)]. Polarization smoothing (PS) with birefringent wedges and 1-THz-bandwidth smoothing by spectral dispersion (SSD) have been installed on OMEGA. The beam-to-beam power imbalance is ⩽5% rms. Implosions of 20-μm-thick CH shells (15 atm fill) using full beam smoothing (1-THz SSD and PS) have primary neutron yields and fuel areal densities that are ∼70% larger than those driven with 0.35-THz SSD without PS. They also produce ∼35% of the predicted one-dimensional neutron yield. The results described here suggest that individual-beam nonuniformity is no longer the primary cause of nonideal target performance. A highly constrained model of the core conditions and fuel–shell mix has been developed. It suggests that there is a “clean” fuel region, surrounded by a mixed region, that acc...


Physics of Plasmas | 2002

First results from cryogenic target implosions on OMEGA

C. Stoeckl; Catalin Chiritescu; J. A. Delettrez; R. Epstein; V. Yu. Glebov; D. R. Harding; R. L. Keck; S. J. Loucks; L. D. Lund; R. L. McCrory; P.W. McKenty; F. J. Marshall; D. D. Meyerhofer; S.F.B. Morse; S. P. Regan; P. B. Radha; S. Roberts; Thomas C. Sangster; W. Seka; S. Skupsky; V. A. Smalyuk; C. Sorce; J. M. Soures; R. P. J. Town; J. A. Frenje; C. K. Li; R. D. Petrasso; F. H. Séguin; Kurtis A. Fletcher; S. Paladino

Initial results from direct-drive spherical cryogenic target implosions on the 60-beam OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] are presented. These experiments are part of the scientific base leading to direct-drive ignition implosions planned for the National Ignition Facility (NIF) [W. J. Hogan, E. I. Moses, B. E. Warner et al., Nucl. Fusion 41, 567 (2001)]. Polymer shells (1-mm diam with walls <3 μm) are filled with up to 1000 atm of D2 to provide 100-μm-thick ice layers. The ice layers are smoothed by IR heating with 3.16-μm laser light and are characterized using shadowgraphy. The targets are imploded by a 1-ns square pulse with up to ∼24 kJ of 351-nm laser light at a beam-to-beam rms energy balance of <3% and full-beam smoothing. Results shown include neutron yield, secondary neutron and proton yields, the time of peak neutron emission, and both time-integrated and time-resolved x-ray images of the imploding core. The experimental values are...


Journal of The Optical Society of America B-optical Physics | 2005

Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams

S. P. Regan; J.A. Marozas; R. Stephen Craxton; J. H. Kelly; William R. Donaldson; P. A. Jaanimagi; D. Jacobs-Perkins; R. L. Keck; Terrance J. Kessler; D. D. Meyerhofer; T. Craig Sangster; W. Seka; V. A. Smalyuk; S. Skupsky; Jonathan D. Zuegel

Laser beam smoothing achieved with 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing on the 60-beam, 30-kJ, 351-nm OMEGA laser system is reported. These beam-smoothing techniques are directly applicable to direct-drive ignition target designs for the 192-beam, 1.8-MJ, 351-nm National Ignition Facility. Equivalent-target-plane images for constant-intensity laser pulses of varying duration were used to determine the smoothing. The properties of the phase plates, frequency modulators, and birefringent wedges were simulated and found to be in good agreement with the measurements.


Physics of Plasmas | 2004

Direct-drive-implosion experiments with enhanced fluence balance on OMEGA

F. J. Marshall; J. A. Delettrez; R. Epstein; R. Forties; R. L. Keck; J. H. Kelly; P.W. McKenty; S. P. Regan; L. J. Waxer

Direct-drive experiments on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] are now regularly performed with enhanced single-beam uniformity (1-THz-bandwidth smoothing by spectral dispersion, including distributed phase plates and polarization rotators). The on-target-beam-energy balance is determined by a set of beam pickoffs that are cross-calibrated to full beam calorimeters and by independent measurements for each beam of the losses incurred in transporting the beams to the target chamber. Variations of the illumination due to beam-to-beam, on-target energy differences and beam-to-beam shape differences can then introduce variations of the illumination and hence drive symmetry that will affect implosions. A new technique has been implemented that determines variations of the beam peak fluences at target chamber center on a full-power target shot by simultaneously measuring the x-ray flux produced by all 60 beams separated on a 4-mm-diam, Au-coated spherical target. The inferred beam-to-beam,...


Physics of Plasmas | 2002

Inference of mix in direct-drive implosions on OMEGA

P. B. Radha; J. A. Delettrez; R. Epstein; V. Yu. Glebov; R. L. Keck; R. L. McCrory; P.W. McKenty; D. D. Meyerhofer; F. J. Marshall; S. P. Regan; S. Roberts; T. C. Sangster; W. Seka; S. Skupsky; V. A. Smalyuk; C. Sorce; C. Stoeckl; J. M. Soures; R. P. J. Town; B. Yaakobi; J. A. Frenje; C. K. Li; R. D. Petrasso; F. H. Séguin; K. Fletcher; Stephen Padalino; C. Freeman; N. Izumi; R. A. Lerche; Thomas W. Phillips

Direct-drive implosions on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] have been diagnosed using a wide range of techniques based on neutrons, charged particles, and x rays. These implosions use full single-beam smoothing (distributed phase plates, 1-THz-bandwidth smoothing by spectral dispersion and polarization smoothing). The beam-to-beam power imbalance is ⩽5%. Fuel areal densities close to those in one-dimensional (1-D) simulations are inferred for implosions with calculated convergence ratios ∼15. The experimental neutron yields are ∼35% of 1-D yields. The complementary nature of the experimental observables is exploited to infer fuel shell mix in these implosions. Data suggest that this mix occurs at relatively small scales. Analysis of the experimental observables results in a picture of the core and mix region indicating that nearly 70% of the compressed fuel areal density is unmixed, and about 20% of the compressed shell areal density is in the...

Collaboration


Dive into the R. L. Keck's collaboration.

Top Co-Authors

Avatar

W. Seka

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. M. Soures

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. P. Knauer

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

S. Skupsky

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge