Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Lance Miller is active.

Publication


Featured researches published by R. Lance Miller.


Journal of Clinical Investigation | 2010

The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice.

Françoise Leviel; Christian A. Hübner; Pascal Houillier; Luciana Morla; Soumaya El Moghrabi; Gaelle Brideau; Hassan Hatim; Mark D. Parker; Ingo Kurth; Alexandra Kougioumtzes; Anne Sinning; Vladimir Pech; Kent A. Riemondy; R. Lance Miller; Edith Hummler; Gary E. Shull; Peter S. Aronson; Alain Doucet; Susan M. Wall; Régine Chambrey; Dominique Eladari

Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.


Antimicrobial Agents and Chemotherapy | 2006

A Small Subpopulation of Blastospores in Candida albicans Biofilms Exhibit Resistance to Amphotericin B Associated with Differential Regulation of Ergosterol and β-1,6-Glucan Pathway Genes

Prasanna D. Khot; Peter A. Suci; R. Lance Miller; Raoul D. Nelson; Bonnie J. Tyler

ABSTRACT The resistance of Candida albicans biofilms to a broad spectrum of antimicrobial agents has been well documented. Biofilms are known to be heterogeneous, consisting of microenvironments that may induce formation of resistant subpopulations. In this study we characterized one such subpopulation. C. albicans biofilms were cultured in a tubular flow cell (TF) for 36 h. The relatively large shear forces imposed by draining the TF removed most of the biofilm, which consisted of a tangled mass of filamentous forms with associated clusters of yeast forms. This portion of the biofilm exhibited the classic architecture and morphological heterogeneity of a C. albicans biofilm and was only slightly more resistant than either exponential- or stationary-phase planktonic cells. A submonolayer fraction of blastospores that remained on the substratum was resistant to 10 times the amphotericin B dose that eliminated the activity of the planktonic populations. A comparison between planktonic and biofilm populations of transcript abundance for genes coding for enzymes in the ergosterol (ERG1, -3, -5, -6, -9, -11, and -25) and β-1,6-glucan (SKN and KRE1, -5, -6, and -9) pathways was performed by quantitative RT-PCR. The results indicate a possible association between the high level of resistance exhibited by the blastospore subpopulation and differential regulation of ERG1, ERG25, SKN1, and KRE1. We hypothesize that the resistance originates from a synergistic effect involving changes in both the cell membrane and the cell wall.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct

Ming-Jiun Yu; R. Lance Miller; Panapat Uawithya; Markus M. Rinschen; Sookkasem Khositseth; Drew W. W. Braucht; Chung-Lin Chou; Trairak Pisitkun; Raoul D. Nelson; Mark A. Knepper

We used a systems biology-based approach to investigate the basis of cell-specific expression of the water channel aquaporin-2 (AQP2) in the renal collecting duct. Computational analysis of the 5′-flanking region of the AQP2 gene (Genomatix) revealed 2 conserved clusters of putative transcriptional regulator (TR) binding elements (BEs) centered at −513 bp (corresponding to the SF1, NFAT, and FKHD TR families) and −224 bp (corresponding to the AP2, SRF, CREB, GATA, and HOX TR families). Three other conserved motifs corresponded to the ETS, EBOX, and RXR TR families. To identify TRs that potentially bind to these BEs, we carried out mRNA profiling (Affymetrix) in mouse mpkCCDc14 collecting duct cells, revealing expression of 25 TRs that are also expressed in native inner medullary collecting duct. One showed a significant positive correlation with AQP2 mRNA abundance among mpkCCD subclones (Ets1), and 2 showed a significant negative correlation (Elf1 and an orphan nuclear receptor Nr1h2). Transcriptomic profiling in native proximal tubules (PT), medullary thick ascending limbs (MTAL), and IMCDs from kidney identified 14 TRs (including Ets1 and HoxD3) expressed in the IMCD but not PT or MTAL (candidate AQP2 enhancer roles), and 5 TRs (including HoxA5, HoxA9 and HoxA10) expressed in PT and MTAL but not in IMCD (candidate AQP2 repressor roles). In luciferase reporter assays, overexpression of 3 ETS family TRs transactivated the mouse proximal AQP2 promoter. The results implicate ETS family TRs in cell-specific expression of AQP2 and point to HOX, RXR, CREB and GATA family TRs as playing likely additional roles.


Journal of The American Society of Nephrology | 2013

Overexpression of Pendrin in Intercalated Cells Produces Chloride-Sensitive Hypertension

Thibaut Jacques; Nicolas Picard; R. Lance Miller; Kent A. Riemondy; Pascal Houillier; Fabien Sohet; Suresh Ramakrishnan; Cara Büsst; Maximilien Jayat; Nicolas Cornière; Hatim Hassan; Peter S. Aronson; Jean Christopher Hennings; Christian A. Hübner; Raoul D. Nelson; Régine Chambrey; Dominique Eladari

Inherited and acquired disorders that enhance the activity of transporters mediating renal tubular Na(+) reabsorption are well established causes of hypertension. It is unclear, however, whether primary activation of an Na(+)-independent chloride transporter in the kidney can also play a pathogenic role in this disease. Here, mice overexpressing the chloride transporter pendrin in intercalated cells of the distal nephron (Tg(B1-hPDS) mice) displayed increased renal absorption of chloride. Compared with normal mice, these transgenic mice exhibited a delayed increase in urinary NaCl and ultimately, developed hypertension when exposed to a high-salt diet. Administering the same sodium intake as NaHCO3 instead of NaCl did not significantly alter BP, indicating that the hypertension in the transgenic mice was chloride-sensitive. Moreover, excessive chloride absorption by pendrin drove parallel absorption of sodium through the epithelial sodium channel ENaC and the sodium-driven chloride/bicarbonate exchanger (Ndcbe), despite an appropriate downregulation of these sodium transporters in response to the expanded vascular volume and hypertension. In summary, chloride transport in the distal nephron can play a primary role in driving NaCl transport in this part of the kidney, and a primary abnormality in renal chloride transport can provoke arterial hypertension. Thus, we conclude that the chloride/bicarbonate exchanger pendrin plays a major role in controlling net NaCl absorption, thereby influencing BP under conditions of high salt intake.


Purinergic Signalling | 2009

P2Y2 receptors and water transport in the kidney

Bellamkonda K. Kishore; Raoul D. Nelson; R. Lance Miller; Noel G. Carlson; Donald E. Kohan

The kidneys play a critical role in the maintenance of water homeostasis. This is achieved by the inherent architecture of the nephron along with the expression of various membrane transporters and channels that are responsible for the vectorial transport of salt and water. The collecting duct has become a focus of attention by virtue of its ability to transport water independent of solutes (free-water transport), and its apparent involvement in various water balance disorders. It was originally believed that the water transport capability of the collecting duct was solely under the influence of the circulating hormone, arginine vasopressin (AVP). However, during the past decade, locally produced autocrine and/or paracrine factors have emerged as potent modulators of transport of water by the collecting duct. Recently, much attention has been focused on the purinergic regulation of renal water transport. This review focuses on the role of the P2Y2 receptor, the predominant purinergic receptor expressed in the collecting duct, in the modulation of water transport in physiological and pathophysiological conditions, and its therapeutic potential as a drug target to treat water balance disorders in the clinic. Studies carried out by us and other investigators are unravelling potent interactions among AVP, prostanoid and purinergic systems in the medullary collecting duct, and the perturbations of these interactions in water balance disorders such as acquired nephrogenic diabetes insipidus. Future studies should address the potential therapeutic benefits of modulators of P2Y2 receptor signalling in water balance disorders, which are extremely prevalent in hospitalised patients irrespective of the underlying pathology.


Journal of The American Society of Nephrology | 2014

Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension

Nicolas Picard; Katja Trompf; Chao Ling Yang; R. Lance Miller; Monique Carrel; Dominique Loffing-Cueni; Robert A. Fenton; David H. Ellison; Johannes Loffing

The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.


Kidney International | 2009

Inactivation of Pkd1 in principal cells causes a more severe cystic kidney disease than in intercalated cells

Kalani L. Raphael; Kevin A. Strait; Peter K. Stricklett; R. Lance Miller; Raoul D. Nelson; Klaus Piontek; Gregory G. Germino; Donald E. Kohan

Renal cysts in autosomal dominant polycystic kidney disease arise from cells throughout the nephron, but there is an uncertainty as to whether both the intercalated cells (ICs) and principal cells (PCs) within the collecting duct give rise to cysts. To determine this, we crossed mice containing loxP sites within introns 1 and 4 of the Pkd1 gene with transgenic mice expressing Cre recombinase under control of the aquaporin-2 promoter or the B1 subunit of the proton ATPase promoter, thereby generating PC- or IC-specific knockout of Pkd1, respectively. Mice, that had Pkd1 deleted in the PCs, developed progressive cystic kidney disease evident during the first postnatal week and had an average lifespan of 8.2 weeks. There was no change in the cellular cAMP content or membrane aquaporin-2 expression in their kidneys. Cysts were present in the cortex and outer medulla but were absent in the papilla. Mice in which PKd1 was knocked out in the ICs had a very mild cystic phenotype as late as 13 weeks of age, limited to 1-2 cysts and confined to the outer rim of the kidney cortex. These mice lived to at least 1.5 years of age without evidence of early mortality. Our findings suggest that PCs are more important than ICs for cyst formation in polycystic kidney disease.


Journal of Laboratory and Clinical Medicine | 1998

Hypoxia regulates endothelin-1 production by the inner medullary collecting duct

R. Lance Miller; Donald E. Kohan

Renal endothelin-1 (ET-1 ) production is increased by hypoxia and has been implicated in ischemia-induced renal hypoperfusion. Because the inner medullary collecting duct (IMCD) is a major source of ET- 1 in the kidney, and because ET- 1--in the setting of ischemic renal failure-may alter medullary perfusion, we sought to determine whether hypoxia modulated ET-1 production by IMCD cells. Primary cultures of rat IMCD cells were exposed to 21%, 3%, or 0%O2. IMCD ET-1 secretion significantly increased after exposure of cultures to 3% O2 (114.1% +/- 4.7% increase over control value) and 0%O2 (171.7% +/- 7.9% increase). ET-1 mRNA levels, as determined by reverse transcription-polymerase chain reaction, also increased 2.5-fold after 24-hour exposure to 0% O2. We speculate that a hypoxia-induced increase in IMCD ET-1 production plays a role in modulating renal medullary perfusion during ischemic renal failure.


The Journal of Physiology | 2013

Genetic ablation of aquaporin‐2 in the mouse connecting tubules results in defective renal water handling

Marleen L. A. Kortenoeven; Nis Borbye Pedersen; R. Lance Miller; Aleksandra Rojek; Robert A. Fenton

•  The water channel aquaporin‐2 (AQP2) is regulated by the hormone vasopressin, and is essential for renal water handling and overall body water balance. •  AQP2 is expressed in the renal connecting tubule (CNT) and collecting duct (CD). The role of AQP2 in the CD is well established. •  Here we generate a novel mouse model with gene deletion of AQP2 in the mouse CNT and use this model to examine the role of AQP2 in this segment. •  Knockout (KO) mice have defective renal water handling under basal conditions, with higher urine volume and reduced urine osmolality, but are able to decrease urine volume under conditions of high circulating vasopressin. •  KO mice have no obvious compensatory mechanisms in other transporters. •  KO mice develop a urinary‐concentrating defect similar to control mice following lithium chloride treatment. However, the defect in KO mice continued to be more severe than in the control mice, suggesting that the CNT does not play a significant role in the pathology of lithium‐induced nephrogenic diabetes insipidus. •  Our studies indicate that the CNT plays a role in regulating body water balance under basal conditions, but not for maximal concentration of the urine during antidiuresis.


American Journal of Physiology-renal Physiology | 2011

Transgenic mice: beyond the knockout

R. Lance Miller

Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interactions using multiple fluorescent proteins in the same mouse, and the cell cycle in real time and in the whole animal, and they can be used to perform deep tissue imaging in the whole animal, follow cell lineage during development and disease, and isolate large quantities of a pure cell type directly from organs. These novel transgenic mice and their applications provide the means for studying of molecular and biochemical events in the whole animal that was previously limited to cell cultures. In conclusion, transgenic mice are not just for generating knockouts.

Collaboration


Dive into the R. Lance Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Knepper

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Hoffert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge