Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Langridge is active.

Publication


Featured researches published by R. Langridge.


New Zealand Journal of Geology and Geophysics | 2012

The Mw 6.2 Christchurch earthquake of February 2011: preliminary report

A Kaiser; C Holden; John Beavan; D Beetham; R. Benites; A Celentano; D Collett; J Cousins; Misko Cubrinovski; G. Dellow; Paul Denys; Eric J. Fielding; B. Fry; M Gerstenberger; R. Langridge; C Massey; M Motagh; N. Pondard; Graeme H. McVerry; J Ristau; Mark W. Stirling; J Thomas; Sr Uma; John X. Zhao

Abstract A moment magnitude (Mw) 6.2 earthquake struck beneath the outer suburbs of Christchurch, New Zealands second largest city, on 22 February 2011 local time. The Christchurch earthquake was the deadliest in New Zealand since the 1931 Mw 7.8 Hawkes Bay earthquake and the most expensive in New Zealands recorded history. The effects of the earthquake on the regions population and infrastructure were severe including 181 fatalities, widespread building damage, liquefaction and landslides. The Christchurch earthquake was an aftershock of the Mw 7.1 Darfield Earthquake of September 2010, occurring towards the eastern edge of the aftershock zone. This was a low recurrence earthquake for New Zealand and occurred on a fault unrecognised prior to the Darfield event. Geodetic and seismological source models show that oblique-reverse slip occurred along a northeast–southwest-striking fault dipping southeast at c. 69°, with maximum slip at 3–4 km depth. Ground motions during the earthquake were unusually large at near-source distances for an earthquake of its size, registering up to 2.2 g (vertical) and 1.7 g (horizontal) near the epicentre and up to 0.8 g (vertical) and 0.7 g (horizontal) in the city centre. Acceleration response spectra exceeded 2500 yr building design codes and estimates based on standard New Zealand models. The earthquake was associated with high apparent stress indicative of a strong fault. Furthermore, rupture in an updip direction towards Christchurch likely led to strong directivity effects in the city. Site effects including long period amplification and near-surface effects also contributed to the severity of ground motions.


Journal of Geophysical Research | 2012

The kinematics of a transition from subduction to strike‐slip: An example from the central New Zealand plate boundary

Laura M. Wallace; Patricia M. Barnes; John Beavan; R. Van Dissen; Nicola Litchfield; Joshu J. Mountjoy; R. Langridge; Geoffroy Lamarche; N. Pondard

[1]xa0We develop a kinematic model for the transition from subduction beneath the North Island, New Zealand, to strike-slip in the South Island, constrained by GPS velocities and active fault slip data. To interpret these data, we use an approach that inverts the kinematic data for poles of rotation of tectonic blocks and the degree of interseismic coupling on faults in the region. Convergence related to the Hikurangi subduction margin becomes very low offshore of the northern South Island, indicating that in this region the majority of the relative plate motion has been transferred onto faults within the upper plate, as suggested by previous studies. This result has implications for understanding the likely extent of subduction interface earthquake rupture in central New Zealand. Easterly trending strike slip faults (such as the Boo Boo fault) are the key features that facilitate the transfer of strike-slip motion from the northern South Island faults further north into the southern North Island and onto the Hikurangi subduction thrust. Our results also indicate that the transition from rapid forearc rotation adjacent to the Hikurangi subduction margin to a strike-slip dominated plate boundary (with negligible vertical-axis rotation) in the South Island occurs via a crustal-scale hinge or kink in the upper plate, compatible with paleomagnetic and structural geological data. Despite the ongoing tectonic evolution of the central New Zealand region, our study highlights a remarkable consistency between data sets spanning decades (GPS), thousands of years (active faulting data), and millions of years (paleomagnetic data and bedrock structure).


Geology | 2012

Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand

Rupert Sutherland; Virginia G. Toy; John Townend; Simon C. Cox; Jennifer Eccles; D. R. Faulkner; David J. Prior; Richard J. Norris; Elisabetta Mariani; Carolyn Boulton; Brett M. Carpenter; Catriona Menzies; Timothy A. Little; M. Hasting; G.P. De Pascale; R. Langridge; H.R. Scott; Z. Reid Lindroos; B. Fleming; Achim J Kopf

Rock damage during earthquake slip affects fluid migration within the fault core and the surrounding damage zone, and consequently coseismic and postseismic strength evolution. Results from the first two boreholes (Deep Fault Drilling Project DFDP-1) drilled through the Alpine fault, New Zealand, which is late in its 200–400 yr earthquake cycle, reveal a >50-m-thick “alteration zone” formed by fluid-rock interaction and mineralization above background regional levels. The alteration zone comprises cemented low-permeability cataclasite and ultramylonite dissected by clay-filled fractures, and obscures the boundary between the damage zone and fault core. The fault core contains a <0.5-m-thick principal slip zone (PSZ) of low electrical resistivity and high spontaneous potential within a 2-m-thick layer of gouge and ultracataclasite. A 0.53 MPa step in fluid pressure measured across this zone confirms a hydraulic seal, and is consistent with laboratory permeability measurements on the order of 10?20 m2. Slug tests in the upper part of the boreholes yield a permeability within the distal damage zone of ?10?14 m2, implying a six-orders-of-magnitude reduction in permeability within the alteration zone. Low permeability within 20 m of the PSZ is confirmed by a subhydrostatic pressure gradient, pressure relaxation times, and laboratory measurements. The low-permeability rocks suggest that dynamic pressurization likely promotes earthquake slip, and motivates the hypothesis that fault zones may be regional barriers to fluid flow and sites of high fluid pressure gradient. We suggest that hydrogeological processes within the alteration zone modify the permeability, strength, and seismic properties of major faults throughout their earthquake cycles.


New Zealand Journal of Geology and Geophysics | 2014

A model of active faulting in New Zealand

Nicola Litchfield; R. Van Dissen; Rupert Sutherland; Patricia M. Barnes; Simon C. Cox; Richard J. Norris; Rj Beavan; R. Langridge; Pilar Villamor; Kelvin Berryman; Mark W. Stirling; A. Nicol; Scott D. Nodder; Geoffroy Lamarche; Dja Barrell; Jarg R. Pettinga; Timothy A. Little; N. Pondard; Joshu J. Mountjoy; Kate Clark

Active fault traces are a surface expression of permanent deformation that accommodates the motion within and between adjacent tectonic plates. We present an updated national-scale model for active faulting in New Zealand, summarize the current understanding of fault kinematics in 15 tectonic domains, and undertake some brief kinematic analysis including comparison of fault slip rates with GPS velocities. The model contains 635 simplified faults with tabulated parameters of their attitude (dip and dip-direction) and kinematics (sense of movement and rake of slip vector), net slip rate and a quality code. Fault density and slip rates are, as expected, highest along the central plate boundary zone, but the model is undoubtedly incomplete, particularly in rapidly eroding mountainous areas and submarine areas with limited data. The active fault data presented are of value to a range of kinematic, active fault and seismic hazard studies.


New Zealand Journal of Geology and Geophysics | 2016

The New Zealand Active Faults Database

R. Langridge; William Ries; Nicola Litchfield; Pilar Villamor; R. Van Dissen; Dja Barrell; Rattenbury; D Heron; S Haubrock; Dougal B. Townsend; Jm Lee; Kelvin Berryman; Andrew Nicol; Simon C. Cox; Mark W. Stirling

ABSTRACT The New Zealand Active Faults Database (NZAFD) is a national geospatial database of active faults – including their locations, names and degrees of activity – that have deformed the ground surface of New Zealand within the last 125,000 years. The NZAFD is used for geological research, hazard modelling and infrastructure planning and is an underlying dataset for other nationally significant hazard applications such as the National Seismic Hazard Model. Recent refinements to the data structure have improved the accuracy of active fault locations and characteristics. A subset of active fault information from the NZAFD, generalised for portrayal and use at a scale of 1:250,000 (and referred to as NZAFD250), is freely available online and can be downloaded in several different formats to suit the needs of a range of users including scientists, governmental authorities and the general public. To achieve a uniform spatial scale of 1:250,000 a simplification of detailed fault locational data was required in some areas, while in other areas new mapping was necessary to provide a consistent level of coverage. Future improvements to the NZAFD will include the incorporation of data on active folds and offshore active faults.


Geology | 2012

New on-fault evidence for a great earthquake in A.D. 1717, central Alpine fault, New Zealand

G.P. De Pascale; R. Langridge

The dextral-reverse Alpine fault is the major onshore plate-boundary structure between the Australian and Pacific plates in New Zealand. No previous study of the central portion of the 200-km-long central segment has provided on-fault evidence for the most recent event (MRE). Using lidar (light detection and ranging) data coupled with field mapping, we recognized the main trace of the Alpine fault north of Gaunt Creek (South Island) as a north-striking fault scarp. We enhanced a natural exposure that revealed evidence for repeated late Holocene thrust fault movement. The north-northwest–striking fault zone is characterized by a distinct 5–50-cm-thick clay fault-gouge layer juxtaposing hanging-wall bedrock (mylonites and cataclasites) over unconsolidated late Holocene footwall colluvium. The bedrock is cut by a strath terrace and overlain by mid-Holocene (ca. 5400 calibrated 14 C yr B.P.) alluvial terrace, which has been faulted repeatedly and is conformably overlain by undeformed late Holocene colluvium and alluvium. An unfaulted peat at the base of the scarp is buried by post-MRE alluvium and yields a calibrated 2σ radiocarbon age of A.D. 1710–1930, which dates the MRE as post-1709. Our data are consistent with sparse on-fault data, and validate earlier off-fault records that suggest an A.D. 1717 MRE. The 1717 event had a moment magnitude of M w 8.1 ± 0.1, based on the 380-km-long surface rupture. Because the fault has not ruptured for ∼300 yr, it is likely approaching the end of its seismic cycle and poses a significant seismic hazard to New Zealand.


Nature | 2017

Extreme hydrothermal conditions at an active plate-bounding fault

Rupert Sutherland; John Townend; Virginia G. Toy; Phaedra Upton; Jamie Coussens; Michael F. Allen; Laura May Baratin; Nicolas Barth; Leeza Becroft; C. M. Boese; Austin Boles; Carolyn Boulton; Neil G. R. Broderick; Lucie Janku-Capova; Brett M. Carpenter; Bernard Célérier; Calum J. Chamberlain; Alan Cooper; Ashley Coutts; Simon J. Cox; Lisa Craw; Mai-Linh Doan; Jennifer Eccles; D. R. Faulkner; Jason Grieve; Julia Grochowski; Anton Gulley; Arthur Hartog; Jamie Howarth; Katrina Jacobs

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31u2009±u200915 degrees Celsius per kilometre. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9u2009±u20091 per cent above hydrostatic levels and an average geothermal gradient of 125u2009±u200955 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.


Journal of Geophysical Research | 2010

Coseismic strike slip at a point during the last four earthquakes on the Wellington fault near Wellington, New Zealand

Timothy A. Little; Russ Van Dissen; Uwe Rieser; Euan G. C. Smith; R. Langridge

[1]xa0We analyze progressively displaced late Quaternary (<12 ka) fluvial terraces along the Wellington fault, near Wellington, New Zealand. Optically stimulated luminescence dating indicates that degradational terraces were produced at a rate of about one terrace per 1000 years, similar to the rate of earthquake surface rupturing. Along the Hutt River near Te Marua, we measured the strike slip of 15 terrace risers and paleochannels on the lowest 8 of these terraces, of Holocene age. The river, after earthquakes, was generally capable of smoothing its faulted riverbanks. The dextral offsets appear to fall into several groupings that record slip accumulation during the last four earthquakes. We calculate a mean single-event slip of 5.0 ± 0.24 m (95% confidence) with an RMS scatter (1σ) of slips about the mean of ±1.5 m. The coefficient of variation (CV) of single-event slip is thus 0.30. This CV is slightly less than a recently compiled global average for point measurements on strike-slip faults, suggesting that the southernmost Wellington fault has behaved in a more nearly characteristic way. We speculate that recent large earthquake ruptures have been bounded on their southern end by the Wellington faults offshore fault termination and perhaps on their northern end by a ∼2 km wide releasing step over. Such persistent sources of rupture arrest might have led to a relative uniformity of rupture dimensions and slip amounts. We infer a late Holocene dextral slip rate of ≥4.5 ± 0.4 mm/yr (1σ) and <8.2 mm/yr, and a mean earthquake recurrence interval of ∼610–1100 years.


New Zealand Journal of Geology and Geophysics | 2005

Defining the geometric segmentation and Holocene slip rate of the Wellington Fault, New Zealand: The Pahiatua section

R. Langridge; Kelvin Berryman; R. Van Dissen

Abstract The Wellington Fault is a major active, right lateral, strike‐slip fault in southern North Island that can be divided into three distinct geometric sections based on changes in neotectonic character and structural complexities. These are, from south to north: the Wellington‐Hutt Valley segment; Tararua section; and Pahiatua section. The Pahiatua section is a 42 km long, straight, NNE‐striking fault section defined between two geometric endpoints near Putara in the south and Woodville. This section has been mapped in detail and exhibits classic strike‐slip tectonic geomorphology and late Quaternary dextral displacements of up to 125 m. Three trenches excavated at sites along the Pahiatua section are used to define the dextral slip rate for this section. At Bennett trench site, a stream is dextrally deflected 50 ± 6 m. Peaty silts underlying “deflected” channel deposits in the trench yield an age of 8390–8700 cal. yr BP, providing a minimum dextral slip rate of 5.1–6.7 mm/yr. At Hughes 1 site, a stream is deflected 60 ± 5 m. Peaty material found stratigraphically above the deflection there was dated (10 500–11 160 cal. yr BP), yielding a maximum slip rate of 4.9–6.2 mm/yr for this displacement. Ebbett 1 trench was excavated across the fault zone where a smaller displacement (18 ± 2 m) yielded a slip rate range of 3.2–5.2 mm/yr. Our preferred dextral slip rate (5.1–6.2 mm/yr) comes from the combination of the minimum and maximum rates from Bennett and Hughes 1 sites. This range is generally lower than (but slightly overlaps) that for the Wellington‐Hutt Valley segment (6–7.6 mm/yr). The single‐event displacement range for the Pahiatua section determined from field measurements is 4.5 ± 1 m. From this data we calculate a recurrence interval for surface‐rupturing earthquakes of 564–1080 yr. The overlap of results from both the Pahiatua section and the Wellington‐Hutt Valley segment allow us to assess the likely slip rate, single‐event displacement, recurrence interval range, and characteristics of the 53 km long, bush‐covered Tararua section of the Wellington Fault. The data show that both the Pahiatua and Tararua sections: (1) are moderate slip rate, strike‐slip fault sections; (2) produce multi‐metre single‐event dextral displacements; (3) have short recurrence intervals; and (4) individually have the capability to generate surface‐rupturing earthquakes of Mw > 7.


Journal of Geophysical Research | 2009

Ultrahigh-resolution seismic reflection imaging of the Alpine Fault, New Zealand

A. E. Kaiser; Alan G. Green; F. M. Campbell; Heinrich Horstmeyer; E. Manukyan; R. Langridge; A. F. McClymont; Neil S. Mancktelow; M. Finnemore; David C. Nobes

[1]xa0High-resolution seismic reflection surveys across active fault zones are capable of supplying key structural information required for assessments of seismic hazard and risk. We have recorded a 360 m long ultrahigh-resolution seismic reflection profile across the Alpine Fault in New Zealand. The Alpine Fault, a continental transform that juxtaposes major tectonic plates, is capable of generating large (M > 7.8) damaging earthquakes. Our seismic profile across a northern section of the fault targets fault zone structures in Holocene to late Pleistocene sediments and underlying Triassic and Paleozoic basement units from 3.5 to 150 m depth. Since ultrashallow seismic data are strongly influenced by near-surface heterogeneity and source-generated noise, an innovative processing sequence and nonstandard processing parameters are required to produce detailed information on the complex alluvial, glaciofluvial and glaciolacustrine sediments and shallow to steep dipping fault-related features. We present high-quality images of structures and deformation within the fault zone that extend and complement interpretations based on shallow paleoseismic and ground-penetrating radar studies. Our images demonstrate that the Alpine Fault dips 75°–80° to the southeast through the Quaternary sediments, and there is evidence that it continues to dip steeply between the shallow basement units. We interpret characteristic curved basement surfaces on either side of the Alpine Fault and deformation in the footwall as consequences of normal drag generated by the reverse-slip components of displacement on the fault. The fault dip and apparent ∼35 m vertical offset of the late Pleistocene erosional basement surface across the Alpine Fault yield a provisional dip-slip rate of 2.0 ± 0.6 mm/yr. The more significant dextral-slip rate cannot be determined from our seismic profile.

Collaboration


Dive into the R. Langridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Finnemore

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge