Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. M. McDermott is active.

Publication


Featured researches published by R. M. McDermott.


Plasma Physics and Controlled Fusion | 2010

Divertor power load feedback with nitrogen seeding in ASDEX Upgrade

A. Kallenbach; R. Dux; J. C. Fuchs; R. Fischer; B. Geiger; L. Giannone; A. Herrmann; T. Lunt; V. Mertens; R. M. McDermott; R. Neu; T. Pütterich; S. K. Rathgeber; V. Rohde; K. Schmid; J. Schweinzer; W. Treutterer

Feedback control of the divertor power load by means of nitrogen seeding has been developed into a routine operational tool in the all-tungsten clad ASDEX Upgrade tokamak. For heating powers above about 12?MW, its use has become inevitable to protect the divertor tungsten coating under boronized conditions. The use of nitrogen seeding is accompanied by improved energy confinement due to higher core plasma temperatures, which more than compensates the negative effect of plasma dilution by nitrogen on the neutron rate. This paper describes the technical details of the feedback controller. A simple model for its underlying physics allows the prediction of its behaviour and the optimization of the feedback gain coefficients used. Storage and release of nitrogen in tungsten surfaces were found to have substantial impact on the behaviour of the seeded plasma, resulting in increased nitrogen consumption with unloaded walls and a latency of nitrogen release over several discharges after its injection. Nitrogen is released from tungsten plasma facing components with moderate surface temperature in a sputtering-like process; therefore no uncontrolled excursions of the nitrogen wall release are observed. Overall, very stable operation of the high-Z tokamak is possible with nitrogen seeding, where core radiative losses are avoided due to its low atomic charge Z and a high ELM frequency is maintained.


Plasma Physics and Controlled Fusion | 2013

Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO

A. Kallenbach; M. Bernert; R. Dux; L. Casali; T. Eich; L. Giannone; A. Herrmann; R. M. McDermott; A. Mlynek; H. W. Müller; F. Reimold; J. Schweinzer; M. Sertoli; G. Tardini; W. Treutterer; E. Viezzer; R. Wenninger; M. Wischmeier

A future fusion reactor is expected to have all-metal plasma facing materials (PFMs) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L–H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for the simultaneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter Psep/R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about Prad,main/R2. Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade (AUG). About half the ITER/DEMO values of Psep/R have been achieved so far, and close to DEMO values of Prad,main/R2, albeit at lower Psep/R. Further increase of this parameter may be achieved by increasing the neutral pressure or improving the divertor geometry.


Plasma Physics and Controlled Fusion | 2011

Fast-ion D-alpha measurements at ASDEX Upgrade

B. Geiger; M. Garcia-Munoz; William W. Heidbrink; R. M. McDermott; G. Tardini; R. Dux; R. Fischer; V. Igochine

A fast-ion D-alpha (FIDA) diagnostic has been developed for the fully tungsten coated ASDEX Upgrade (AUG) tokamak using 25 toroidally viewing lines of sight and featuring a temporal resolution of 10 ms. The diagnostics toroidal geometry determines a well-defined region in velocity space which significantly overlaps with the typical fast-ion distribution in AUG plasmas. Background subtraction without beam modulation is possible because relevant parts of the FIDA spectra are free from impurity line contamination. Thus, the temporal evolution of the confined fast-ion distribution function can be monitored continuously. FIDA profiles during on- and off-axis neutral beam injection (NBI) heating are presented which show changes in the radial fast-ion distribution with the different NBI geometries. Good agreement has been obtained between measured and simulated FIDA radial profiles in MHD-quiescent plasmas using fast-ion distribution functions provided by TRANSP. In addition, a large fast-ion redistribution with a drop of about 50% in the central fast-ion population has been observed in the presence of a q = 2 sawtooth-like crash, demonstrating the capabilities of the diagnostic.


Plasma Physics and Controlled Fusion | 2013

The effect of a metal wall on confinement in JET and ASDEX Upgrade

M N A Beurskens; J. Schweinzer; C. Angioni; A. Burckhart; C D Challis; I Chapman; R. Fischer; J Flanagan; L. Frassinetti; C Giroud; J. Hobirk; E Joffrin; A. Kallenbach; M Kempenaars; M. Leyland; P Lomas; G Maddison; M Maslov; R. M. McDermott; R. Neu; I Nunes; T Osborne; F. Ryter; S Saarelma; P. A. Schneider; P Snyder; G. Tardini; E. Viezzer; E. Wolfrum; Jet-Efda Contributors

In both JET and ASDEX Upgrade (AUG) the plasma energy confinement has been affected by the presence of a metal wall by the requirement of increased gas fuelling to avoid tungsten pollution of the plasma. In JET with a beryllium/tungsten wall the high triangularity baseline H-mode scenario (i.e. similar to the ITER reference scenario) has been the strongest affected and the benefit of high shaping to give good normalized confinement of H98???1 at high Greenwald density fraction of fGW???0.8 has not been recovered to date. In AUG with a full tungsten wall, a good normalized confinement H98???1 could be achieved in the high triangularity baseline plasmas, albeit at elevated normalized pressure ?N?>?2. The confinement lost with respect to the carbon devices can be largely recovered by the seeding of nitrogen in both JET and AUG. This suggests that the absence of carbon in JET and AUG with a metal wall may have affected the achievable confinement. Three mechanisms have been tested that could explain the effect of carbon or nitrogen (and the absence thereof) on the plasma confinement. First it has been seen in experiments and by means of nonlinear gyrokinetic simulations (with the GENE code), that nitrogen seeding does not significantly change the core temperature profile peaking and does not affect the critical ion temperature gradient. Secondly, the dilution of the edge ion density by the injection of nitrogen is not sufficient to explain the plasma temperature and pressure rise. For this latter mechanism to explain the confinement improvement with nitrogen seeding, strongly hollow Zeff profiles would be required which is not supported by experimental observations. The confinement improvement with nitrogen seeding cannot be explained with these two mechanisms. Thirdly, detailed pedestal structure analysis in JET high triangularity baseline plasmas have shown that the fuelling of either deuterium or nitrogen widens the pressure pedestal. However, in JET-ILW this only leads to a confinement benefit in the case of nitrogen seeding where, as the pedestal widens, the obtained pedestal pressure gradient is conserved. In the case of deuterium fuelling in JET-ILW the pressure gradient is strongly degraded in the fuelling scan leading to no net confinement gain due to the pedestal widening. The pedestal code EPED correctly predicts the pedestal pressure of the unseeded plasmas in JET-ILW within ?5%, however it does not capture the complex variation of pedestal width and gradient with fuelling and impurity seeding. Also it does not predict the observed increase of pedestal pressure by nitrogen seeding in JET-ILW. Ideal peeling ballooning MHD stability analysis shows that the widening of the pedestal leads to a down shift of the marginal stability boundary by only 10?20%. However, the variations in the pressure gradient observed in the JET-ILW fuelling experiment is much larger and spans a factor of more than two. As a result the experimental points move from deeply unstable to deeply stable on the stability diagram in a deuterium fuelling scan. In AUG-W nitrogen seeded plasmas, a widening of the pedestal has also been observed, consistent with the JET observations. The absence of carbon can thus affect the pedestal structure, and mainly the achieved pedestal gradient, which can be recovered by seeding nitrogen. The underlying physics mechanism is still under investigation and requires further understanding of the role of impurities on the pedestal stability and pedestal structure formation.


Nuclear Fusion | 2012

Off-diagonal particle and toroidal momentum transport: a survey of experimental, theoretical and modelling aspects

C. Angioni; Y. Camenen; F. J. Casson; E. Fable; R. M. McDermott; A. G. Peeters; J.E. Rice

In tokamaks, turbulent particle and toroidal momentum transport are both characterized by the presence of off-diagonal contributions which play an essential role in establishing the profile shapes of the density and the toroidal rotation under most conditions. In this paper similarities and differences between the two turbulent transport channels are pointed out and, thereby, interesting physical aspects which connect the two channels are identified. The main contributions to off-diagonal particle and toroidal momentum transport are reviewed by means of a rather simplified description, which aims at providing, when possible, a direct connection between theoretical, modelling and experimental research.


Nuclear Fusion | 2011

Observations of core toroidal rotation reversals in Alcator C-Mod ohmic L-mode plasmas

J. E. Rice; B.P. Duval; M.L. Reinke; Y. Podpaly; A. Bortolon; R.M. Churchill; I. Cziegler; P. H. Diamond; A. Dominguez; P. Ennever; C. Fiore; R. Granetz; M. Greenwald; A. Hubbard; J.W. Hughes; James H. Irby; Y. Ma; E. Marmar; R. M. McDermott; M. Porkolab; N. Tsujii; S.M. Wolfe

Direction reversals of intrinsic toroidal rotation have been observed in Alcator C-Mod ohmic L-mode plasmas following modest electron density or toroidal magnetic field ramps. The reversal process occurs in the plasma interior, inside of the q = 3/2 surface. For low density plasmas, the rotation is in the co-current direction, and can reverse to the counter-current direction following an increase in the electron density above a certain threshold. Reversals from the co- to counter-current direction are correlated with a sharp decrease in density fluctuations with k(R) >= 2 cm(-1) and with frequencies above 70 kHz. The density at which the rotation reverses increases linearly with plasma current, and decreases with increasing magnetic field. There is a strong correlation between the reversal density and the density at which the global ohmic L-mode energy confinement changes from the linear to the saturated regime.


Review of Scientific Instruments | 2012

High-resolution charge exchange measurements at ASDEX Upgrade

E. Viezzer; T. Pütterich; R. Dux; R. M. McDermott

The charge exchange recombination spectroscopy (CXRS) diagnostics at ASDEX Upgrade (AUG) have been upgraded and extended to provide high-resolution measurements of impurity ion temperature, density, and rotation profiles. The existing core toroidal CXRS diagnostic has been refurbished to increase the level of signal, thus enabling shorter exposure times down to 3.5 ms. Additional lines of sight provide more detailed profiles and enable simultaneous measurements of multiple impurities. In addition, a new CXRS system has been installed, which allows for the measurement of poloidal impurity ion rotation in the plasma edge with high temporal (1.9 ms) and spatial resolution (down to 5 mm). A new wavelength correction method has been implemented to perform in situ wavelength calibrations on a shot-to-shot basis. Absolute measurements of the poloidal impurity ion rotation with uncertainties smaller than 1.5 km/s have been obtained. Comparison of all the CXRS measurements provides a consistency check of the diagnostics and good agreement has been found for all of the CXRS systems.


Nuclear Fusion | 2011

Gyrokinetic modelling of electron and boron density profiles of H-mode plasmas in ASDEX Upgrade

Clemente Angioni; R. M. McDermott; E. Fable; R. Fischer; T. Pütterich; F. Ryter; G. Tardini

Local gyrokinetic calculations of the logarithmic gradients at mid-radius of both electron and boron densities in ASDEX Upgrade H-mode plasmas are presented and compared with the experimental observations. The experimental results show that both the electron and the boron density profiles increase their peaking in response to the addition of central electron cyclotron heating over a background of neutral beam injection (NBI) heating. The boron density profiles are always less peaked than the electron density profiles in the confinement region, and are flat or even slightly hollow in the presence of NBI heating only. The experimental behaviours are well reproduced by the theoretical predictions. The agreement allows the identification, through theoretical modelling, of the transport mechanisms responsible for the observed dependences. In particular, the observed increase in the logarithmic electron density gradient with increasing central electron heating is explained by a concurrent reduction of the outward pure convection and an increase in the inward thermodiffusion. In addition, it is found that the plasma toroidal rotation velocity and its radial gradient play a non-negligible role in the turbulent boron transport, and allow the prediction of a decrease in boron peaking with increasing rotation velocity, which is consistent with the experimental observations.


Nuclear Fusion | 2013

High-accuracy characterization of the edge radial electric field at ASDEX Upgrade

E. Viezzer; T. Pütterich; G. D. Conway; R. Dux; T. Happel; J. C. Fuchs; R. M. McDermott; F. Ryter; B. Sieglin; W. Suttrop; M. Willensdorfer; E. Wolfrum

The installation of a new poloidal charge exchange recombination spectroscopy (CXRS) diagnostic at ASDEX Upgrade (AUG) has enabled the determination of the radial electric field, Er, using the radial force balance of impurity ions. Er has been derived from charge exchange (CX) spectra measured on different impurity species, such as He2+, B5+, C6+ and Ne10+. The resulting Er profiles are found to be identical within the uncertainties regardless of the impurity species used, thus, demonstrating the validity of the diagnostic technique. The Er profile has been compared to the main ion pressure gradient term, which is found to be the dominant contribution at the plasma edge, thus, supporting that the Er well is created by the main ion species. The Er profile has been measured in different confinement regimes including L-, I- and H-mode. The depth of the Er well and the magnitude of the Er shear are correlated with the ion pressure at the pedestal top. The temporal evolution of the measured CX profiles and the resulting Er have been studied during an edge-localized mode (ELM) cycle. At the ELM crash, the Er minimum is less deep resulting in a reduction of the E???B shear. Within 2?ms after the ELM crash, the edge kinetic profiles have nearly recovered and the Er well is observed to recover simultaneously. In high density type-I ELM mitigated H-mode plasmas, obtained via externally applied magnetic perturbations (MPs) with toroidal mode number n?=?2, no clear effect on Er due to the MPs has been observed.


Plasma Physics and Controlled Fusion | 2011

Core momentum and particle transport studies in the ASDEX Upgrade tokamak

R. M. McDermott; C. Angioni; R. Dux; E. Fable; T. Pütterich; F. Ryter; Anna Salmi; T. Tala; G. Tardini; E. Viezzer

Core momentum and particle transport in ASDEX Upgrade (AUG) have been examined in a wide variety of plasma discharges and via several different methods. Experiments were performed in which ECRH power was added to NBI heated H-modes causing the electron and impurity ion density profiles to peak and the core toroidal rotation to flatten. Turbulence calculations of these plasmas show a change in the dominant regime from ITG to TEM due to the ECRH induced changes in the electron and ion temperature profiles. The impurity and electron density behavior can be fully explained by the changes in the turbulent particle transport. Momentum transport analyses demonstrate that in the TEM regime there is a core localized, counter-current directed, residual stress momentum flux of the same order of magnitude as the applied NBI torque. The initial results from momentum modulation experiments performed on AUG confirm that the Prandtl number in AUG NBI heated H-modes is close to 1 and that there exists a significant inward momentum pinch. Lastly, an intrinsic toroidal rotation database has been developed at AUG which can be used to test theoretically predicted dependences of residual stress momentum fluxes. Initial results show a linear correlation between the gradient of the toroidal rotation and both the electron density gradient scale length and the frequency of the dominant turbulent mode.

Collaboration


Dive into the R. M. McDermott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge