Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Paillot is active.

Publication


Featured researches published by R. Paillot.


PLOS Pathogens | 2009

Genomic evidence for the evolution of Streptococcus equi : host restriction, increased virulence, and genetic exchange with human pathogens

Matthew T. G. Holden; Zoe Heather; R. Paillot; Karen F. Steward; K. Webb; Fern Ainslie; Thibaud Jourdan; Nathalie Bason; Nancy Holroyd; Karen Mungall; Michael A. Quail; Mandy Sanders; Mark Simmonds; David Willey; Karen Brooks; David M. Aanensen; Brian G. Spratt; Keith A. Jolley; Martin C. J. Maiden; Michael A. Kehoe; N. Chanter; Stephen D. Bentley; Carl Robinson; Duncan J. Maskell; Julian Parkhill; Andrew S. Waller

The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci.


Veterinary Microbiology | 2009

Antigenic and genetic variations in European and North American equine influenza virus strains (H3N8) isolated from 2006 to 2007

Neil Bryant; Adam Rash; Colin A. Russell; Julie Ross; Annie Cooke; Samantha Bowman; Shona MacRae; Nicola S. Lewis; R. Paillot; Reto Zanoni; Hanspeter Meier; Lowri A. Griffiths; Janet M. Daly; Ashish Tiwari; Thomas M. Chambers; J. Richard Newton; Debra Elton

Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.


Infection and Immunity | 2010

Identification of Three Novel Superantigen-Encoding Genes in Streptococcus equi subsp. zooepidemicus, szeF, szeN, and szeP

R. Paillot; Alistair C. Darby; Carl Robinson; Nicola Wright; Karen F. Steward; Emma Anderson; K. Webb; Matthew T. G. Holden; Androulla Efstratiou; Karen Broughton; Keith A. Jolley; Simon L. Priestnall; Maria C. Marotti Campi; Margaret Hughes; Alan D Radford; Kerstin Erles; Andrew S. Waller

ABSTRACT The acquisition of superantigen-encoding genes by Streptococcus pyogenes has been associated with increased morbidity and mortality in humans, and the gain of four superantigens by Streptococcus equi is linked to the evolution of this host-restricted pathogen from an ancestral strain of the opportunistic pathogen Streptococcus equi subsp. zooepidemicus. A recent study determined that the culture supernatants of several S. equi subsp. zooepidemicus strains possessed mitogenic activity but lacked known superantigen-encoding genes. Here, we report the identification and activities of three novel superantigen-encoding genes. The products of szeF, szeN, and szeP share 59%, 49%, and 34% amino acid sequence identity with SPEH, SPEM, and SPEL, respectively. Recombinant SzeF, SzeN, and SzeP stimulated the proliferation of equine peripheral blood mononuclear cells, and tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) production, in vitro. Although none of these superantigen genes were encoded within functional prophage elements, szeN and szeP were located next to a prophage remnant, suggesting that they were acquired by horizontal transfer. Eighty-one of 165 diverse S. equi subsp. zooepidemicus strains screened, including 7 out of 15 isolates from cases of disease in humans, contained at least one of these new superantigen-encoding genes. The presence of szeN or szeP, but not szeF, was significantly associated with mitogenic activity in the S. equi subsp. zooepidemicus population (P < 0.000001, P < 0.000001, and P = 0.104, respectively). We conclude that horizontal transfer of these novel superantigens from and within the diverse S. equi subsp. zooepidemicus population is likely to have implications for veterinary and human disease.


Veterinary Research | 2008

Protection, systemic IFN

R. Paillot; Humphrey Grimmett; Debra Elton; Janet M. Daly

In the horse, conventional inactivated or subunit vaccines against equine influenza virus (EIV) induce a short-lived antibody-based immunity to infection. Alternative strategies of vaccination have been subsequently developed to mimic the long-term protection induced by natural infection with the virus. One of these approaches is the use of immune-stimulating complex (ISCOM)-based vaccines. ISCOM vaccines induce a strong antibody response and protection against influenza in horses, humans, and a mouse model. Cell-mediated immunity (CMI) has been demonstrated in humans and mice after ISCOM vaccination, but rarely investigated in the horse. The aim of this study was to evaluate EIV-specific immune responses after intra-muscular vaccination with an ISCOM-EIV vaccine (EQUIP F) containing both equine influenza H7N7 (A/eq/Newmarket/77) and H3N8 (A/eq/Borlänge/91 and A/eq/Kentucky/98) strains. The antibody response was measured by single radial haemolysis (SRH) assay using different H3N8 EIV strains. Stimulation of type-1 immunity was evaluated with a recently developed method that measures EIV-specific IFNgamma synthesis by peripheral blood lymphocytes (PBL). The protective efficacy of this ISCOM-based vaccine against challenge infection with a recent equine influenza (H3N8; A/eq/South Africa/4/03) strain was also evaluated. Vaccinated ponies developed elevated levels of EIV-specific SRH antibody and increased percentage of EIV-specific IFNgamma(+) PBL, whereas these responses were only detected after challenge infection in unvaccinated control ponies. Vaccinates showed minimal signs of disease and did not shed virus when challenged shortly after the second immunisation. In conclusion, evidence of type-1 immunity induced by an ISCOM-based vaccine is described for the first time in horses.


Journal of Medical Microbiology | 2011

\gamma

Andrew S. Waller; R. Paillot; John F. Timoney

Strangles caused by the host adapted Lancefield group C Streptococcus equi subspecies equi (S. equi) is a frequently diagnosed infectious disease of horses worldwide. Critical to the global success of S. equi is its ability to establish persistent infections within the guttural pouches of recovered apparently healthy horses that can result in transmission to in-contact animals. Recent research has identified key events in the S. equi genome, which occurred during its evolution from an ancestral strain of S. equi subspecies zooepidemicus, that may enhance its ability to evade host innate immune responses and rapidly multiply in the tonsillar complex and draining lymph nodes. This review discusses the role of these genetic events on the evolution and emergence of this important host-restricted pathogen.


Infection and Immunity | 2010

, and antibody responses induced by an ISCOM-based vaccine against a recent equine influenza virus in its natural host

R. Paillot; Carl Robinson; Karen F. Steward; Nicola Wright; Thibaud Jourdan; Nicola Butcher; Zoe Heather; Andrew S. Waller

ABSTRACT Streptococcus equi is the causative agent of strangles, the most frequently diagnosed infectious disease of horses worldwide. The disease is characterized by abscessation and swelling of the lymph nodes of the head and neck, which can literally strangle the horse to death. S. equi produces four recently acquired phage-associated bacterial superantigens (sAgs; SeeH, SeeI, SeeL, and SeeM) that share homology with the mitogenic toxins of Streptococcus pyogenes. The aim of this study was to characterize the contribution of each of these S. equi sAgs to mitogenic activity in vitro and quantify the sAg-neutralizing capacity of sera from naturally infected horses in order to better understand their role in pathogenicity. Each of the sAgs was successfully cloned, and soluble proteins were produced in Escherichia coli. SeeI, SeeL, and SeeM induced a dose-dependent proliferative response in equine CD4 T lymphocytes and synthesis of gamma interferon (IFN-γ). SeeH did not stimulate equine peripheral blood mononuclear cells (PBMC) but induced proliferation of asinine PBMC. Allelic replacement mutants of S. equi strain 4047 with sequential deletion of the superantigen genes were generated. Deletion of seeI, seeL, and seeM completely abrogated the mitogenic activity and synthesis of IFN-γ, in equine PBMC, of the strain 4047 culture supernatant. Sera from naturally infected convalescent horses had only limited sAg-neutralizing activities. We propose that S. equi sAgs play an important role in S. equi pathogenicity by stimulating an overzealous and inappropriate Th1 response that may interfere with the development of an effective immune response.


Clinical and Vaccine Immunology | 2010

Streptococcus equi: a pathogen restricted to one host

Simon L. Priestnall; Kerstin Erles; Harriet W. Brooks; Jacqueline M. Cardwell; Andrew S. Waller; R. Paillot; Carl Robinson; Alistair C. Darby; Matthew T. G. Holden; Sandra Schöniger

ABSTRACT Streptococcus equi subsp. zooepidemicus has been linked to cases of acute fatal pneumonia in dogs in several countries. Outbreaks can occur in kenneled dog populations and result in significant levels of morbidity and mortality. This highly contagious disease is characterized by the sudden onset of clinical signs, including pyrexia, dyspnea, and hemorrhagic nasal discharge. The pathogenesis of S. equi subsp. zooepidemicus infection in dogs is poorly understood. This study systematically characterized the histopathological changes in the lungs of 39 dogs from a large rehoming shelter in London, United Kingdom; the dogs were infected with S. equi subsp. zooepidemicus. An objective scoring system demonstrated that S. equi subsp. zooepidemicus caused pneumonia in 26/39 (66.7%) dogs, and most of these dogs (17/26 [65.4%]) were classified as severe fibrino-suppurative, necrotizing, and hemorrhagic. Three recently described superantigen genes (szeF, szeN, and szeP) were detected by PCR in 17/47 (36.2%) of the S. equi subsp. zooepidemicus isolates; however, there was no association between the presence of these genes and the histopathological score. The lungs of S. equi subsp. zooepidemicus-infected dogs with severe respiratory signs and lung pathology did however have significantly higher mRNA levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 8 (IL-8) than in uninfected controls, suggesting a role for an exuberant host immune response in the pathogenesis of this disease.


Genome Research | 2015

Contribution of each of four superantigens to Streptococcus equi-induced mitogenicity, gamma interferon synthesis, and immunity.

Simon R. Harris; Carl Robinson; Karen F. Steward; K. Webb; R. Paillot; Julian Parkhill; Matthew T. G. Holden; Andrew S. Waller

Strangles, the most frequently diagnosed infectious disease of horses worldwide, is caused by Streptococcus equi. Despite its prevalence, the global diversity and mechanisms underlying the evolution of S. equi as a host-restricted pathogen remain poorly understood. Here, we define the global population structure of this important pathogen and reveal a population replacement in the late 19th or early 20th Century. Our data reveal a dynamic genome that continues to mutate and decay, but also to amplify and acquire genes despite the organism having lost its natural competence and become host-restricted. The lifestyle of S. equi within the horse is defined by short-term acute disease, strangles, followed by long-term infection. Population analysis reveals evidence of convergent evolution in isolates from post-acute disease samples as a result of niche adaptation to persistent infection within a host. Mutations that lead to metabolic streamlining and the loss of virulence determinants are more frequently found in persistent isolates, suggesting that the pathogenic potential of S. equi reduces as a consequence of long-term residency within the horse post-acute disease. An example of this is the deletion of the equibactin siderophore locus that is associated with iron acquisition, which occurs exclusively in persistent isolates, and renders S. equi significantly less able to cause acute disease in the natural host. We identify several loci that may similarly be required for the full virulence of S. equi, directing future research toward the development of new vaccines against this host-restricted pathogen.


Veterinary Microbiology | 2013

Characterization of Pneumonia Due to Streptococcus equi subsp. zooepidemicus in Dogs

R. Paillot; L. Prowse; Fernando Montesso; C.M. Huang; H. Barnes; J. Escala

Equine influenza (EI) is a serious respiratory disease of horses induced by the equine influenza virus (EIV). Surveillance, quarantine procedures and vaccination are widely used to prevent or to contain the disease. This study aimed to further characterise the immune response induced by a non-updated inactivated EI and tetanus vaccine, including protection against a representative EIV isolate of the Florida clade 2 sublineage. Seven ponies were vaccinated twice with Duvaxyn IE-T Plus at an interval of four weeks. Five ponies remained unvaccinated. All ponies were experimentally infected with the EIV strain A/eq/Richmond/1/07 two weeks after the second vaccination. Clinical signs of disease were recorded and virus shedding was measured after experimental infection. Antibody response and EIV-specific IFNgamma synthesis, a marker of cell-mediated immunity, were measured at different time points of the study. Vaccination resulted in significant protection against clinical signs of disease induced by A/eq/Richmond/1/07 and reduced virus shedding when challenged at the peak of immunity. Antigenic drift has been shown to reduce protection against EIV infection. Inclusion of a more recent and representative EIV vaccine strain, as recommended by the OIE expert surveillance panel on equine influenza vaccine, may maximise field protection. In addition, significant levels of EIV-specific IFNgamma synthesis by peripheral blood lymphocytes were detected in immunised ponies, which provided a first evidence of CMI stimulation after vaccination with a whole inactivated EIV. Duration of humoral response was also retrospectively investigated in 14 horses vaccinated under field condition and following the appropriate immunisation schedule, up to 599 days after first immunisation. This study revealed that most immunised horses maintained significant levels of cross-reactive SRH antibody for a prolonged period of time, but individual monitoring may be beneficial to identify poor vaccine responders.


Veterinary Microbiology | 2013

Genome specialization and decay of the strangles pathogen, Streptococcus equi, is driven by persistent infection

Susanne Lindahl; Anna Aspán; Viveca Båverud; R. Paillot; John Pringle; N. Rash; Robert Söderlund; Andrew S. Waller

Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is generally considered a commensal and an opportunistic pathogen of the upper airways in horses. Establishing whether certain strains of S. zooepidemicus can cause upper respiratory disease as a host-specific pathogen of horses, and if there are certain genogroups of S. zooepidemicus that are more virulent than others is of major clinical importance. In this study, we describe an outbreak of upper respiratory disease in horses that was associated with S. zooepidemicus. Upper respiratory samples were cultured, analyzed by real-time PCR for S. zooepidemicus and S. equi, and genetically differentiated by sequencing of the SzP protein gene and multi-locus sequence typing (MLST). Serum samples were analyzed for antibodies against S. equi and common viral respiratory pathogens. The ST-24 strain of S. zooepidemicus was isolated from all horses with clinical signs of disease, while the healthy horses carried other strains of S. zooepidemicus. Bacteriological, molecular and serological analyses strongly suggest that a single strain (ST-24) was responsible for the disease outbreak, and that certain strains of this presumed commensal may be more virulent than others.

Collaboration


Dive into the R. Paillot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet M. Daly

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge