R. S. Rundberg
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. S. Rundberg.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001
M. Heil; R. Reifarth; M. M. Fowler; R. Haight; F. Käppeler; R. S. Rundberg; E.H Seabury; J. L. Ullmann; J. B. Wilhelmy; K. Wisshak
Abstract The quest for improved neutron capture cross-sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4 π BaF 2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4 π BaF 2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004
R. Reifarth; T. A. Bredeweg; A. Alpizar-Vicente; J.C. Browne; Ernst I. Esch; U. Greife; R. Haight; R. Hatarik; A. Kronenberg; J.M. O'Donnell; R. S. Rundberg; J. L. Ullmann; D. J. Vieira; J. B. Wilhelmy; J. M. Wouters
Abstract In the commissioning phase of the DANCE project (Detector for Advanced Neutron Capture Experiments) measurements have been performed with special emphasis on the identification and suppression of possible backgrounds for the planned (n,γ) experiments. This report describes several background sources, observed in the experiment or anticipated from simulations, which will need to be suppressed in this and in similar detectors that are planned at other facilities. First successes are documented in the suppression of background from scattered neutrons captured in the detector as well as from the internal radiation. Experimental results and simulations using the GEANT code are compared.
IEEE Transactions on Nuclear Science | 2006
J. M. Wouters; Ana Alpizar Vicente; T. A. Bredeweg; Ernst I. Esch; R. Haight; R. Hatarik; J.M. O'Donnell; R. Reifarth; R. S. Rundberg; J. M. Schwantes; S. A. Sheets; John L. Ullmann; D. J. Vieira; J. B. Wilhelmy
The DANCE detector is a segmented 4/spl pi/ gamma-ray calorimeter for measuring (n, /spl gamma/) and (n,fission) cross-sections of stable and long-lived radioactive isotopes. DANCE uses waveform digitization to acquire the basic gamma-ray data, which maximizes the information available for event reconstruction, but has necessitated the development of several techniques for handling the resulting high data rates. This paper describes the basic experimental requirements for acquisition and analysis and how we have satisfied these requirements primarily by extending existing acquisition and analysis frameworks.
Physical Review C | 2008
R. Reifarth; M. Heil; Christian Forssén; U. Besserer; A. Couture; S. Dababneh; L. Dörr; J. Görres; R. Haight; F. Käppeler; A. Mengoni; S. O'Brien; N. Patronis; R. Plag; R. S. Rundberg; M. Wiescher; J. B. Wilhelmy
The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,gamma) reaction is also important for the validation of the Coulomb dissociation method, where the (n,gamma) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,gamma) reaction with neutron energies ranging from 20 to 800 keV.
Review of Scientific Instruments | 2008
Gary P. Grim; P. A. Bradley; T. A. Bredeweg; A. L. Keksis; M. M. Fowler; A. C. Hayes; G. Jungman; A. W. Obst; R. S. Rundberg; D. J. Vieira; J. B. Wilhelmy; Lee Allen Bernstein; Charles Cerjan; R. J. Fortner; K. J. Moody; D. Schneider; Dawn A. Shaughnessy; W. Stoeffl; M. A. Stoyer
Understanding mix in inertial confinement fusion (ICF) experiments at the National Ignition Facility requires the diagnosis of charged-particle reactions within an imploded target. Radiochemical diagnostics of these reactions are currently under study by scientists at Los Alamos and Lawrence Livermore National Laboratories. Measurement of these reactions requires assay of activated debris and tracer gases from the target. Presented below is an overview of the prompt radiochemistry diagnostic development efforts, including a discussion of the reactions of interest as well as the progress being made to collect and count activated material.
Physics of Plasmas | 2016
Brian M. Haines; G. P. Grim; James R. Fincke; R. C. Shah; Chad J. Forrest; Kevin Silverstein; Frederic J. Marshall; Melissa Boswell; M. M. Fowler; Robert A. Gore; Anna Catherine Hayes-Sterbenz; Gerard Jungman; Andreas Klein; R. S. Rundberg; Michael James Steinkamp; J. B. Wilhelmy
We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.
Modern Physics Letters A | 2006
A. C. Hayes; Gerard Jungman; J. C. Solem; P. A. Bradley; R. S. Rundberg
The National Ignition Facility (NIF) technology is designed to drive deuterium–tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fuel and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. Here we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be(0.9% Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy β-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix. We further show how a mix signal could be detectable in an ignition failure regime corresponding to yields greater than about 2 kJ.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003
T. Granier; L. Pangault; T. Ethvignot; R. Haight; X. Ledoux; V. Méot; Y. Patin; P. Pras; M. Szmigiel; R. S. Rundberg; J. B. Wilhelmy
Abstract The “lead-slowing-down-spectrometer” method is an established technique for measuring neutron-induced reaction cross-sections. It is known to provide high neutron fluences below 100 keV . In this work, the possibility of applying this method to the measurement of the neutron-induced fission cross-section of shortlived actinides and in particular of the 77 eV isomer of 235 U is investigated. Numerical simulations and a test-experiment using a photovaltaic cell fission detector demonstrate the feasibility of such a measurement at the Los Alamos Neutron Science Center using 800 MeV proton-induced spallation to provide source neutrons.
Journal of Radioanalytical and Nuclear Chemistry | 1990
E. S. Patera; David E. Hobart; A. Meijer; R. S. Rundberg
The understanding and prediction of radionuclide migration within the geosphere of a high-level radioactive waste repository requires knowledge of chemical and physical processes. In this paper, we present an overview of the investigations being performed at Los Alamos National Laboratory for the site characterization activites of the Yucca Mountain Project. The areas of investigation include: the determination of solubility concentration limits and chemical speciation for fission products and actinides; the collection of sorption data and understanding of sorption mechanisms; and the transport mechanism of advection, diffusion, and dispersion.
Physical Review C | 2007
P. Koehler; J. L. Ullmann; T. A. Bredeweg; J.M. O'Donnell; R. Reifarth; R. S. Rundberg; D. J. Vieira; J. M. Wouters
We have determined the spins