R. Trigg McClellan
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by R. Trigg McClellan.
Journal of Orthopaedic Trauma | 2001
Duran Yetkinler; R. Trigg McClellan; E S Reindel; Dennis R. Carter; Robert D. Poser
Objective To evaluate the effect of calcium phosphate bone cement on stability and strength of the fracture repair in a central depressed tibial plateau fracture cadaveric model. Design Paired human cadaveric tibial specimens. Setting Biomechanics laboratory. Patients Uniform pure depression fractures of lateral tibial plateau were created in twenty human cadaveric tibial specimens. Intervention The first part of the study used thirteen pairs of tibiae in two groups: a control group receiving the conventional treatment of morselized bone graft and two cancellous screws and an experimental group receiving calcium phosphate bone cement only. The second part of the study used seven pairs of tibiae in two experimental groups: one receiving calcium phosphate bone cement with a more extensive void preparation and the other group receiving calcium phosphate bone cement with a more extensive void preparation and two screws. Main Outcome Measurements Each tibia was loaded on a Material Testing Systems machine from twenty newtons to 250 newtons for 10,000 cycles to simulate immediate postoperative load transmission to the tibial plateau. Specimens were then loaded to failure to determine the ultimate strength of the reconstruction. Displacement of the articular fragment and stiffness at each cycle were measured during dynamic loading. Peak load, deformation at peak load, and resistance to depression were measured during the load to failure. Results The treatment of depressed tibia plateau fractures with a calcium phosphate cement provides equivalent or better stability than conventional open reduction and internal fixation in pure depression tibial plateau fractures. If the fracture void is prepared by eliminating the cancellous bone under the subchondral plate, the results are further improved. Conclusions This study suggests that the non–weight-bearing postoperative period may be significantly reduced without clinically significant articular collapse.
Journal of Orthopaedic Trauma | 1993
John T. Kao; David Burton; Curt P. Comstock; R. Trigg McClellan; Eugene J. Carragee
Summary Pudendal nerve palsy after femoral intramedullary (IM) nailing was retrospectively reviewed in 65 nailings performed on 63 patients. Ten pudendal nerve palsies (15%) were noted in eight male patients and two female patients. Three male patients had autonomic involvement affecting erections. All palsies were transient (3–173 days), and occurred in patients done in the supine position as opposed to the lateral position. A possible etiology is the smaller perineal post used in the supine position that may penetrate the pelvis deeper, compressing the pudendal nerve. Other factors may be operating time and amount of traction. As prevention, the perineal post must always be adequately padded, and the operating time and amount of traction should be minimized to decrease the incidence of pudendal nerve palsy. Because pudendal nerve palsy appears to be a common complication in femoral IM nailing, the patient must be informed of this possibility.
The Spine Journal | 2013
Russell Dedini; Alexandra M. Karacozoff; Frank G. Shellock; Duan Xu; R. Trigg McClellan; Murat Pekmezci
BACKGROUND CONTEXT Few studies exist for magnetic resonance imaging (MRI) issues and ballistics, and there are no studies addressing movement, heating, and artifacts associated with ballistics at 3-tesla (T). Movement because of magnetic field interactions and radiofrequency (RF)-induced heating of retained bullets may injure nearby critical structures. Artifacts may also interfere with the diagnostic use of MRI. PURPOSE To investigate these potential hazards of MRI on a sample of bullets and shotgun pellets. STUDY DESIGN Laboratory investigation, ex vivo. METHODS Thirty-two different bullets and seven different shotgun pellets, commonly encountered in criminal trauma, were assessed relative to 1.5-, 3-, and 7-T magnetic resonance systems. Magnetic field interactions, including translational attraction and torque, were measured. A representative sample of five bullets were then tested for magnetic field interactions, RF-induced heating, and the generation of artifacts at 3-T. RESULTS At all static magnetic field strengths, non-steel-containing bullets and pellets exhibited no movement, whereas one steel core bullet and two steel pellets exhibited movement in excess of what might be considered safe for patients in MRI at 1.5-, 3- and 7-Tesla. At 3-T, the maximum temperature increase of five bullets tested was 1.7°C versus background heating of 1.5°C. Of five bullets tested for artifacts, those without a steel core exhibited small signal voids, whereas a single steel core bullet exhibited a very large signal void. CONCLUSIONS Ballistics made of lead with copper or alloy jackets appear to be safe with respect to MRI-related movement at 1.5-, 3-, and 7-T static magnetic fields, whereas ballistics containing steel may pose a danger if near critical body structures because of strong magnetic field interactions. Temperature increases of selected ballistics during 3-T MRI was not clinically significant, even for the ferromagnetic projectiles. Finally, ballistics containing steel generated larger artifacts when compared with ballistics made of lead with copper and alloy jackets and may impair the diagnostic use of MRI.
Journal of Orthopaedic Trauma | 2011
Erik McDonald; Thomas Chu; Michael Tufaga; Meir Marmor; Ravinder Singh; Duran Yetkinler; Amir Matityahu; Jenni M. Buckley; R. Trigg McClellan
Objectives: This study compared the biomechanical fatigue strength of calcium phosphate augmented repairs versus autogenous bone graft (ABG) repairs in lateral tibia plateau fractures. Methods: Eight matched pairs of tibias (six male, two female; age, 75 ± 14 years) were harvested from fresh-frozen cadavers. Reproducible split-depression fractures were simulated and repaired by an orthopaedic traumatologist using a lateral tibial plateau plate. One tibia from each donor was randomly assigned to either calcium phosphate (Callos; Acumed, Hillsboro, OR) or ABG as augmentation. The femoral component of a hemitotal knee arthroplasty was attached to the actuator of a servohydraulic press and centered above the repair site. Cyclic, physiological compression loads were applied at 4Hz starting with a maximum load of 15% body weight and increasing by 15% body weight every 70,000 cycles. Loading conditions were determined from calculations of weight distribution, joint contact area, and gait characterization from existing literature. Repair site depression and stiffness were measured at regular intervals. Specimens were then loaded to failure at 1 mm/min. Results: Calcium phosphate augmented repairs subsided less and were more stiff during the fatigue loading than were ABG repairs at the 70,000, 140,000, and 210,000 cycle intervals (P < 0.03) All repairs survived to 210,000 cycles. The average ultimate load of the calcium phosphate repairs was 2241 ± 455 N (N = 6) and 1717 ± 508 N (N = 8) for ABG repairs (P = 0.02). Conclusion: Calcium phosphate repairs have significantly higher fatigue strength and ultimate load than ABG repairs and may increase the immediate weightbearing capabilities of the repaired knee.
Neurosurgery | 2011
Justin K. Scheer; Jessica A. Tang; Vedat Deviren; Jenni M. Buckley; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames
BACKGROUND:Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified. OBJECTIVE:To compare the multidirectional bending stiffness of 7 revision strategies following rod failure. METHODS:Seven fresh-frozen human spines (T11-pelvis) were tested as follows: (1) posterior instrumentation from T12-S1 (excluding L3) with iliac fixation and L3 PSO; (2) inline connectors after rod breakage at L3 (L2 screws removed for access); (3) cross-links connecting rods above and below inline connectors; satellite rods (4) parallel, (5) 45° anterior, and (6) 45° posterior to original rods; 45°posterior with cross-links connecting (7) original and (8) satellite rods. Groups 3 to 8 were tested in random order. Nondestructive pure moment flexion-extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 7.5 Nm; 3D motion tracking monitored the primary range of motion. RESULTS:Addition of inline connectors alone restored stiffness in FE and LB (P > .05), but not in AR (P < .05). Satellite rods (groups 4 to 6) restored stiffness in FE and LB (P > .05), but not in AR (P < .05) and were not significantly different from one another (P > .05). The addition of cross-links (groups 3, 7, and 8) restored stiffness in all bending modes (P > .05) and were significantly greater than inline connectors alone in AR (P < .05). CONCLUSION:The results suggest that these revision strategies can restore stiffness without entire rod replacement. Failure of AR stiffness restoration can be mitigated with cross-links. The positioning of the satellite rods is not an important factor in strengthening the revision.
Current Opinion in Orthopaedics | 1999
R. Trigg McClellan; Curt P. Comstock
Despite the evolution of surgical technique and implants, fractures of the tibial plateau remain a challenging clinical problem. The spectrum of injury with varying degrees of articular depression, displacement, and soft tissue injury is so great that no single treatment has proven uniformly success
Journal of Neurosurgery | 2011
Justin K. Scheer; Jessica A. Tang; Vedat Deviren; Frank L. Acosta; Jenni M. Buckley; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames
OBJECT Ankylosing spondylitis (AS) is a genetic condition that frequently results in spinal sagittal plane deformity of thoracolumbar or cervicothoracic junctions. Generally, a combination of osteotomy and spinal fixation is used to treat severe cases. Although surgical techniques for traumatic injury across the cervicothoracic junction have been well characterized in clinical and biomechanical literature, the specific model of instrumented opening wedge osteotomy in autofused AS has not been studied biomechanically. This study characterizes the structural stability of various posterior fixation techniques across the cervicothoracic junction in spines with AS, specifically considering the effects of posterior rod diameter and material type. METHODS For each of 10 fresh-frozen human spines (3 male, 7 female; mean age 60 ± 10 years; C3-T6), an opening wedge osteotomy was performed at C7-T1. Lateral mass screws were inserted bilaterally from C-4 to C-6 and pedicle screws from T-1 to T-3. For each specimen, 3.2-mm titanium (Ti), 3.5-mm Ti, and 3.5-mm cobalt chromium (CoCr) posterior spinal fusion rods were tested. To simulate the anterior autofusion and long lever arms characteristic of AS, anterior cervical plates were placed from C-4 to C-7 and T-1 to T-3 using fixed angle screws. Nondestructive flexion-extension, lateral bending, and axial rotation tests were conducted to 3.0 Nm in each anatomical direction; 3D motion tracking was used to monitor primary range of motion across the osteotomy (C7-T1). Biomechanical tests used a repeat-measures test design. The order of testing for each rod type was randomized across specimens. RESULTS Constructs instrumented with 3.5-mm Ti and 3.5-mm CoCr rods were significantly stiffer in flexion-extension than those with the 3.2-mm Ti rod (25.2% ± 16.4% and 48.1% ± 15.3% greater than 3.2-mm Ti, respectively, p < 0.05). For axial rotation, the 3.5-mm Ti and 3.5-mm CoCr constructs also exhibited a significant increase in rigidity compared with the 3.2-mm Ti construct (36.1% ± 12.2% and 52.0% ± 20.0%, respectively, p < 0.05). There were no significant differences in rigidity seen between the 3 types of rods in lateral bending (p > 0.05). The 3.5-mm CoCr rod constructs showed significantly higher rigidity in flexion-extension than the 3.5-mm Ti rod constructs (33.1% ± 15.5%, p < 0.05). There was a trend for 3.5-mm CoCr to have greater rigidity in axial rotation (36.2% ± 18.6%), but this difference was not statistically significant (p > 0.05). CONCLUSIONS The results of this study suggest that 3.5-mm CoCr rods are optimal for achieving the most rigid construct in opening wedge osteotomy in the cervicothoracic region of an AS model. Rod diameter and material properties should be considered in construct strategy. Some surgeons have advocated anterior plating in patients with AS after osteotomy for additional stability and bone graft surface. Although this effect was not examined in this study, additional posterior stability achieved with CoCr may decrease the need for additional anterior procedures.
Journal of Neurosurgery | 2010
Justin K. Scheer; Jessica A. Tang; Johnny Eguizabal; Azadeh Farin; Jenni M. Buckley; Vedat Deviren; R. Trigg McClellan; Christopher P. Ames
OBJECT Primary spine tumors frequently involve the C-2 vertebra. Complete resection of the lesion may require total removal of the C-2 vertebral body, pedicles, and dens process. Authors of this biomechanical study are the first to evaluate a comprehensive set of reconstruction methods after C-2 resection to determine the optimal configuration depending on the degree of excision required. METHODS Eight human heads (from the skull to C-6) from 4 males and 4 females with a mean age of 68 +/- 18 years at death were cleaned of tissue, while leaving ligaments and discs intact. Nondestructive flexion and extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted using a nonconstraining, pure moment loading apparatus, and relative motion across the fusion site (C1-3) was measured using a 3D motion tracking system. Specimens were tested up to 1.5 Nm at 0.25-Nm intervals for 45 seconds each. The spines were instrumented using 3.5-mm titanium rods with a midline occipitocervical plate (4.0 x 12-mm screws) and lateral mass screws (excluding C-2) at the C-1 (3.0 x 40 mm) and C3-5 levels (3.0 x 16 mm). Testing was repeated for the following configurations: Configuration 1 (CF1), instrumentation only from occiput to C-5; CF2, C-2 corpectomy leaving the dens; CF3, titanium mesh cage (16-mm diameter) from C-3 to C-1 ring and dens; CF4, removal of cage, C-1 ring, and dens; CF5, titanium mesh cage from C-3 to clivus (16-mm diameter); CF6, removal of C-2 posterior elements leaving the C3-clivus cage (spondylectomy); CF7, titanium mesh cage from C-3 to clivus (16-mm diameter) with 2 titanium mesh cages from C-3 to C-1 lateral masses (12-mm diameter); and CF8, removal of all 3 cages. A crosslink was added connecting the posterior rods for CF1, CF6, and CF8. Range-of-motion (ROM) differences between all groups were compared via repeated-measures ANOVA with paired comparisons using the Student t-test with a Tukey post hoc adjustment. A p < 0.05 indicated significance. RESULTS The addition of a central cage significantly increased FE rigidity compared with posterior instrumentation alone but had less of an effect in AR and LB. The addition of lateral cages did not significantly improve rigidity in any bending direction (CF6 vs CF7, p > 0.05). With posterior instrumentation alone (CF1 and CF2), C-2 corpectomy reduced bending rigidity in only the FE direction (p < 0.05). The removal of C-2 posterior elements in the presence of a C3-clivus cage did not affect the ROM in any bending mode (CF5 vs CF6, p > 0.05). A crosslink addition in CF1, CF6, and CF8 did not significantly affect primary or off-axis ROM (p > 0.05). CONCLUSIONS Study results indicated that posterior instrumentation alone with 3.5-mm rods is insufficient for stability restoration after a C-2 corpectomy. Either C3-1 or C3-clivus cages can correct instability introduced by C-2 removal in the presence of posterior instrumentation. The addition of lateral cages to a C3-clivus fusion construct may be unnecessary since it does not significantly improve rigidity in any direction.
Global Spine Journal | 2012
Vedat Deviren; Jessica A. Tang; Justin K. Scheer; Jenni M. Buckley; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames
Introduction Studies document rod fracture in pedicle subtraction osteotomy (PSO) settings where disk spaces were preserved above or adjacent to the PSO. This study compares the multidirectional bending rigidity and fatigue life of PSO segments with or without interbody support. Methods Twelve specimens received bilateral T12–S1 posterior fixation and L3 PSO. Six received extreme lateral interbody fusion (XLIF) cages in addition to PSO at L2–L3 and L3–L4; six had PSO only. Flexion-extension, lateral bending, and axial rotation (AR) tests were conducted up to 7.5 Newton-meters (Nm) for groups: (1) posterior fixation, (2) L3 PSO, (3) addition of cages (six specimens). Relative motion across the osteotomy (L2–L4) and entire fixation site (T12–S1) was measured. All specimens were then fatigue tested for 35K cycles. Results Regardingmultiaxial bending, there was a significant 25.7% reduction in AR range of motion across L2–L4 following addition of cages. Regarding fatigue bending, dynamic stiffness, though not significant (p = 0.095), was 22.2% greater in the PSO + XLIF group than in the PSO-only group. Conclusions Results suggest that placement of interbody cages in PSO settings has a potential stabilizing effect, which is modestly evident in the acute setting. Inserting cages in a second-stage surgery remains a viable option and may benefit patients in terms of recovery but additional clinical studies are necessary to confirm this.
Spine | 2011
Justin K. Scheer; Jessica A. Tang; Jenni M. Buckley; Vedat Deviren; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames
Study Design. Biomechanical laboratory research. Objective. To characterize the structural stiffness of opening and closing wedge osteotomies and the independent effect of rod diameter. Summary of Background Data. Traditionally, C7 opening wedge osteotomy (OWO) has been performed for patients with ankylosing spondylitis. For patients without ankylosing spondylitis, closing wedge osteotomy (CWO) may be considered for more controlled closure. Biomechanical characteristics of the two osteotomy alternatives have not yet been analyzed. Methods. Nondestructive pure moment flexion/extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 4.5 Nm on cadaveric specimens (C4–T3). All specimens underwent posterior bilateral screw-rod fixation with 3.5 mm and 4.5 mm Ti rods, whereas half received OWO and half received CWO. Results. Independent of osteotomy type, constructs with 4.5 mm rods exhibited a significant increase in stiffness compared to 3.5 mm rods in all bending modes (P < 0.01). Relative to 3.5 mm rods, 4.5 mm constructs showed an increase in stiffness of 31 ± 12% for FE, 37 ± 39% for LB, and 31 ± 11% for AR. At the osteotomy site, there was a 43 ± 23% increase in FE stiffness, 45 ± 36% in LB, and 41 ± 17% in AR. Independent of rod diameter, CWO was significantly stiffer than OWO (42% for the construct and 56% across the osteotomy) in FE bending only (P < 0.05). Conclusion. The surgeon can expect a similar increase in stiffness in switching from 3.5 mm to 4.5 mm rod independent of osteotomy type. The increased stiffness of CWOs has an anatomic basis. OWOs disrupt the anterior longitudinal ligament (ALL) and leave a significant anterior gap whereas CWOs create a wedge through the vertebral body and leave the ALL and the discs above and below the osteotomy intact. The closure in CWOs leaves no anterior gap providing greater axial loading stability. This greater bone on bone contact in CWOs is likely a significant reason for the anterior stiffness and may provide greater fusion rates in the nonankylosing spondylitis patient population.