Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica A. Tang is active.

Publication


Featured researches published by Jessica A. Tang.


Journal of Neurosurgery | 2013

Cervical spine alignment, sagittal deformity, and clinical implications

Justin K. Scheer; Jessica A. Tang; Justin S. Smith; Frank L. Acosta; Themistocles S. Protopsaltis; Benjamin Blondel; Shay Bess; Christopher I. Shaffrey; Vedat Deviren; Virginie Lafage; Frank J. Schwab; Christopher P. Ames

This paper is a narrative review of normal cervical alignment, methods for quantifying alignment, and how alignment is associated with cervical deformity, myelopathy, and adjacent-segment disease (ASD), with discussions of health-related quality of life (HRQOL). Popular methods currently used to quantify cervical alignment are discussed including cervical lordosis, sagittal vertical axis, and horizontal gaze with the chin-brow to vertical angle. Cervical deformity is examined in detail as deformities localized to the cervical spine affect, and are affected by, other parameters of the spine in preserving global sagittal alignment. An evolving trend is defining cervical sagittal alignment. Evidence from a few recent studies suggests correlations between radiographic parameters in the cervical spine and HRQOL. Analysis of the cervical regional alignment with respect to overall spinal pelvic alignment is critical. The article details mechanisms by which cervical kyphotic deformity potentially leads to ASD and discusses previous studies that suggest how postoperative sagittal malalignment may promote ASD. Further clinical studies are needed to explore the relationship of cervical malalignment and the development of ASD. Sagittal alignment of the cervical spine may play a substantial role in the development of cervical myelopathy as cervical deformity can lead to spinal cord compression and cord tension. Surgical correction of cervical myelopathy should always take into consideration cervical sagittal alignment, as decompression alone may not decrease cord tension induced by kyphosis. Awareness of the development of postlaminectomy kyphosis is critical as it relates to cervical myelopathy. The future direction of cervical deformity correction should include a comprehensive approach in assessing global cervicalpelvic relationships. Just as understanding pelvic incidence as it relates to lumbar lordosis was crucial in building our knowledge of thoracolumbar deformities, T-1 incidence and cervical sagittal balance can further our understanding of cervical deformities. Other important parameters that account for the cervical-pelvic relationship are surveyed in detail, and it is recognized that all such parameters need to be validated in studies that correlate HRQOL outcomes following cervical deformity correction.


Neurosurgery | 2012

The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery.

Jessica A. Tang; Justin K. Scheer; Justin S. Smith; Vedat Deviren; Shay Bess; Robert A. Hart; Virginie Lafage; Christopher I. Shaffrey; Frank J. Schwab; Christopher P. Ames

BACKGROUND Positive spinal regional and global sagittal malalignment has been repeatedly shown to correlate with pain and disability in thoracolumbar fusion. OBJECTIVE To evaluate the relationship between regional cervical sagittal alignment and postoperative outcomes for patients receiving multilevel cervical posterior fusion. METHODS From 2006 to 2010, 113 patients received multilevel posterior cervical fusion for cervical stenosis, myelopathy, and kyphosis. Radiographic measurements made at intermediate follow-up included the following: (1) C1-C2 lordosis, (2) C2-C7 lordosis, (3) C2-C7 sagittal vertical axis (C2-C7 SVA; distance between C2 plumb line and C7), (4) center of gravity of head SVA (CGH-C7 SVA), and (5) C1-C7 SVA. Health-related quality-of-life measures included neck disability index (NDI), visual analog pain scale, and SF-36 physical component scores. Pearson product-moment correlation coefficients were calculated between pairs of radiographic measures and health-related quality-of-life scores. RESULTS Both C2-C7 SVA and CGH-C7 SVA negatively correlated with SF-36 physical component scores (r =-0.43, P< .001 and r =-0.36, P = .005, respectively). C2-C7 SVA positively correlated with NDI scores (r = 0.20, P = .036). C2-C7 SVA positively correlated with C1-C2 lordosis (r = 0.33, P = .001). For significant correlations between C2-C7 SVA and NDI scores, regression models predicted a threshold C2-C7 SVA value of approximately 40 mm, beyond which correlations were most significant. CONCLUSION Our findings demonstrate that, similar to the thoracolumbar spine, the severity of disability increases with positive sagittal malalignment following surgical reconstruction.


Journal of Neurosurgery | 2014

Gross-total resection outcomes in an elderly population with glioblastoma: a SEER-based analysis

Abraham Noorbakhsh; Jessica A. Tang; Logan P. Marcus; Brandon A. McCutcheon; David D. Gonda; Craig S Schallhorn; Mark A. Talamini; David C. Chang; Bob S. Carter; Clark C. Chen

OBJECT There is limited information on the relationship between patient age and the clinical benefit of resection in patients with glioblastoma. The purpose of this study was to use a population-based database to determine whether patient age influences the frequency that gross-total resection (GTR) is performed, and also whether GTR is associated with survival difference in different age groups. METHODS The authors identified 20,705 adult patients with glioblastoma in the Surveillance, Epidemiology, and End Results (SEER) registry (1998-2009). Surgical practice patterns were defined by the categories of no surgery, subtotal resection (STR), and GTR. Kaplan-Meier and multivariate Cox regression analyses were used to assess the pattern of surgical practice and overall survival. RESULTS The frequency that GTR was achieved in patients with glioblastoma decreased in a stepwise manner as a function of patient age (from 36% [age 18-44 years] to 24% [age ≥ 75]; p < 0.001). For all age groups, glioblastoma patients who were selected for and underwent GTR showed a 2- to 3-month improvement in overall survival (p < 0.001) relative to those who underwent STR. These trends remained true after a multivariate analysis that incorporated variables including ethnicity, sex, year of diagnosis, tumor size, tumor location, and radiotherapy status. CONCLUSIONS Gross-total resection is associated with improved overall survival, even in elderly patients with glioblastoma. As such, surgical decisions should be individually tailored to the patient rather than an adherence to age as the sole clinical determinant.


Journal of Neurosurgery | 2013

Reoperation rates and impact on outcome in a large, prospective, multicenter, adult spinal deformity database

Justin K. Scheer; Jessica A. Tang; Justin S. Smith; Eric O. Klineberg; Robert A. Hart; Gregory M. Mundis; Douglas C. Burton; Richard Hostin; Michael F. O'Brien; Shay Bess; Khaled M. Kebaish; Vedat Deviren; Virginie Lafage; Frank J. Schwab; Christopher I. Shaffrey; Christopher P. Ames

OBJECT Complications and reoperation for surgery to correct adult spinal deformity are not infrequent, and many studies have analyzed the rates and factors that influence the likelihood of reoperation. However, there is a need for more comprehensive analyses of reoperation in adult spinal deformity surgery from a global standpoint, particularly focusing on the 1st year following operation and considering radiographic parameters and the effects of reoperation on health-related quality of life (HRQOL). This study attempts to determine the prevalence of reoperation following surgery for adult spinal deformity, assess the indications for these reoperations, evaluate for a relation between specific radiographic parameters and the need for reoperation, and determine the potential impact of reoperation on HRQOL measures. METHODS A retrospective review was conducted of a prospective, multicenter, adult spinal deformity database collected through the International Spine Study Group. Data collected included age, body mass index, sex, date of surgery, information regarding complications, reoperation dates, length of stay, and operation time. The radiographic parameters assessed were total number of levels instrumented, total number of interbody fusions, C-7 sagittal vertical axis, uppermost instrumented vertebra (UIV) location, and presence of 3-column osteotomies. The HRQOL assessment included Oswestry Disability Index (ODI), 36-Item Short Form Health Survey physical component and mental component summary, and SRS-22 scores. Smoking history, Charlson Comorbidity Index scores, and American Society of Anesthesiologists Physical Status classification grades were also collected and assessed for correlation with risk of early reoperation. Various statistical tests were performed for evaluation of specific factors listed above, and the level of significance was set at p < 0.05. RESULTS Fifty-nine (17%) of a total of 352 patients required reoperation. Forty-four (12.5%) of the reoperations occurred within 1 year after the initial surgery, including 17 reoperations (5%) within 30 days. Two hundred sixty-eight patients had a minimum of 1 year of follow-up. Fifty-three (20%) of these patients had a 3-column osteotomy, and 10 (19%) of these 53 required reoperation within 1 year of the initial procedure. However, 3-column osteotomy was not predictive of reoperation within 1 year, p = 0.5476). There were no significant differences between groups with regard to the distribution of UIV, and UIV did not have a significant effect on reoperation rates. Patients needing reoperation within 1 year had worse ODI and SRS-22 scores measured at 1-year follow-up than patients not requiring operation. CONCLUSIONS Analysis of data from a large multicenter adult spinal deformity database shows an overall 17% reoperation rate, with a 19% reoperation rate for patients treated with 3-column osteotomy and a 16% reoperation rate for patients not treated with 3-column osteotomy. The most common indications for reoperation included instrumentation complications and radiographic failure. Reoperation significantly affected HRQOL outcomes at 1-year follow-up. The need for reoperation may be minimized by carefully considering spinal alignment, termination of fixation, and type of surgical procedure (presence of osteotomy). Precautions should be taken to avoid malposition or instrumentation (rod) failure.


Neurosurgery | 2013

Effect of severity of rod contour on posterior rod failure in the setting of lumbar pedicle subtraction osteotomy (PSO): a biomechanical study.

Jessica A. Tang; Jeremi M. Leasure; Justin S. Smith; Jenni M. Buckley; Dimitriy Kondrashov; Christopher P. Ames

BACKGROUND Rod failure has been reported clinically in pedicle subtraction osteotomy (PSO) to correct flat back deformity. OBJECTIVE To characterize the fatigue life of posterior screw-rod constructs in the setting of PSO as a function of the severity of rod contour angle. METHODS A modified ASTM F1717 to 04 was used. Rods were contoured to the appropriate angle for the equivalent 20-, 40-, or 60-degree PSO angles. Testing was performed on a mechanical test frame at 400/40 N and 250/25 N, and specimens were cycled at 4 Hz to failure or run-out at 2,000,000 cycles. The effect of the screw-rod system on fatigue strength of curved rods was compared using Cox proportional hazards regression. RESULTS At 400 N/40 N, Cox proportional hazards regression indicated that contouring rods from a 20-degree PSO angle to either 40 or 60 degrees significantly decreased fatigue life (hazard ratio = 7863.6, P = .0144). However, contouring rods from a 40-degree PSO angle to 60 degrees had no significant effect on the fatigue life (P > .05). At 250 N/25 N, Cox proportional hazards regression indicated that contouring rods from a 20-degree PSO angle to either 40 or 60 degrees significantly decreased fatigue life (hazard ratio = 7863.6, P = .0144). Furthermore, contouring rods from a 40-degree PSO angle to 60 degrees had a significant effect on the fatigue life (hazard ratio = 7863.6, P = .0144). CONCLUSION Results suggest that in the setting of PSO, the fatigue life of posterior spinal fixation rods depends largely on the severity of the rod angle used to maintain the vertebral angle created by the PSO and is significantly lowered by rod contouring.


Neurosurgery | 2011

Biomechanical analysis of revision strategies for rod fracture in pedicle subtraction osteotomy.

Justin K. Scheer; Jessica A. Tang; Vedat Deviren; Jenni M. Buckley; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames

BACKGROUND:Pseudoarthrosis after pedicle subtraction osteotomy (PSO) can require revision surgery due to posterior rod failure, and the stiffness of these revision constructs has not been quantified. OBJECTIVE:To compare the multidirectional bending stiffness of 7 revision strategies following rod failure. METHODS:Seven fresh-frozen human spines (T11-pelvis) were tested as follows: (1) posterior instrumentation from T12-S1 (excluding L3) with iliac fixation and L3 PSO; (2) inline connectors after rod breakage at L3 (L2 screws removed for access); (3) cross-links connecting rods above and below inline connectors; satellite rods (4) parallel, (5) 45° anterior, and (6) 45° posterior to original rods; 45°posterior with cross-links connecting (7) original and (8) satellite rods. Groups 3 to 8 were tested in random order. Nondestructive pure moment flexion-extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 7.5 Nm; 3D motion tracking monitored the primary range of motion. RESULTS:Addition of inline connectors alone restored stiffness in FE and LB (P > .05), but not in AR (P < .05). Satellite rods (groups 4 to 6) restored stiffness in FE and LB (P > .05), but not in AR (P < .05) and were not significantly different from one another (P > .05). The addition of cross-links (groups 3, 7, and 8) restored stiffness in all bending modes (P > .05) and were significantly greater than inline connectors alone in AR (P < .05). CONCLUSION:The results suggest that these revision strategies can restore stiffness without entire rod replacement. Failure of AR stiffness restoration can be mitigated with cross-links. The positioning of the satellite rods is not an important factor in strengthening the revision.


Journal of Neurosurgery | 2011

Biomechanical analysis of cervicothoracic junction osteotomy in cadaveric model of ankylosing spondylitis: effect of rod material and diameter

Justin K. Scheer; Jessica A. Tang; Vedat Deviren; Frank L. Acosta; Jenni M. Buckley; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames

OBJECT Ankylosing spondylitis (AS) is a genetic condition that frequently results in spinal sagittal plane deformity of thoracolumbar or cervicothoracic junctions. Generally, a combination of osteotomy and spinal fixation is used to treat severe cases. Although surgical techniques for traumatic injury across the cervicothoracic junction have been well characterized in clinical and biomechanical literature, the specific model of instrumented opening wedge osteotomy in autofused AS has not been studied biomechanically. This study characterizes the structural stability of various posterior fixation techniques across the cervicothoracic junction in spines with AS, specifically considering the effects of posterior rod diameter and material type. METHODS For each of 10 fresh-frozen human spines (3 male, 7 female; mean age 60 ± 10 years; C3-T6), an opening wedge osteotomy was performed at C7-T1. Lateral mass screws were inserted bilaterally from C-4 to C-6 and pedicle screws from T-1 to T-3. For each specimen, 3.2-mm titanium (Ti), 3.5-mm Ti, and 3.5-mm cobalt chromium (CoCr) posterior spinal fusion rods were tested. To simulate the anterior autofusion and long lever arms characteristic of AS, anterior cervical plates were placed from C-4 to C-7 and T-1 to T-3 using fixed angle screws. Nondestructive flexion-extension, lateral bending, and axial rotation tests were conducted to 3.0 Nm in each anatomical direction; 3D motion tracking was used to monitor primary range of motion across the osteotomy (C7-T1). Biomechanical tests used a repeat-measures test design. The order of testing for each rod type was randomized across specimens. RESULTS Constructs instrumented with 3.5-mm Ti and 3.5-mm CoCr rods were significantly stiffer in flexion-extension than those with the 3.2-mm Ti rod (25.2% ± 16.4% and 48.1% ± 15.3% greater than 3.2-mm Ti, respectively, p < 0.05). For axial rotation, the 3.5-mm Ti and 3.5-mm CoCr constructs also exhibited a significant increase in rigidity compared with the 3.2-mm Ti construct (36.1% ± 12.2% and 52.0% ± 20.0%, respectively, p < 0.05). There were no significant differences in rigidity seen between the 3 types of rods in lateral bending (p > 0.05). The 3.5-mm CoCr rod constructs showed significantly higher rigidity in flexion-extension than the 3.5-mm Ti rod constructs (33.1% ± 15.5%, p < 0.05). There was a trend for 3.5-mm CoCr to have greater rigidity in axial rotation (36.2% ± 18.6%), but this difference was not statistically significant (p > 0.05). CONCLUSIONS The results of this study suggest that 3.5-mm CoCr rods are optimal for achieving the most rigid construct in opening wedge osteotomy in the cervicothoracic region of an AS model. Rod diameter and material properties should be considered in construct strategy. Some surgeons have advocated anterior plating in patients with AS after osteotomy for additional stability and bone graft surface. Although this effect was not examined in this study, additional posterior stability achieved with CoCr may decrease the need for additional anterior procedures.


Journal of Neurosurgery | 2010

Optimal reconstruction technique after C-2 corpectomy and spondylectomy: a biomechanical analysis

Justin K. Scheer; Jessica A. Tang; Johnny Eguizabal; Azadeh Farin; Jenni M. Buckley; Vedat Deviren; R. Trigg McClellan; Christopher P. Ames

OBJECT Primary spine tumors frequently involve the C-2 vertebra. Complete resection of the lesion may require total removal of the C-2 vertebral body, pedicles, and dens process. Authors of this biomechanical study are the first to evaluate a comprehensive set of reconstruction methods after C-2 resection to determine the optimal configuration depending on the degree of excision required. METHODS Eight human heads (from the skull to C-6) from 4 males and 4 females with a mean age of 68 +/- 18 years at death were cleaned of tissue, while leaving ligaments and discs intact. Nondestructive flexion and extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted using a nonconstraining, pure moment loading apparatus, and relative motion across the fusion site (C1-3) was measured using a 3D motion tracking system. Specimens were tested up to 1.5 Nm at 0.25-Nm intervals for 45 seconds each. The spines were instrumented using 3.5-mm titanium rods with a midline occipitocervical plate (4.0 x 12-mm screws) and lateral mass screws (excluding C-2) at the C-1 (3.0 x 40 mm) and C3-5 levels (3.0 x 16 mm). Testing was repeated for the following configurations: Configuration 1 (CF1), instrumentation only from occiput to C-5; CF2, C-2 corpectomy leaving the dens; CF3, titanium mesh cage (16-mm diameter) from C-3 to C-1 ring and dens; CF4, removal of cage, C-1 ring, and dens; CF5, titanium mesh cage from C-3 to clivus (16-mm diameter); CF6, removal of C-2 posterior elements leaving the C3-clivus cage (spondylectomy); CF7, titanium mesh cage from C-3 to clivus (16-mm diameter) with 2 titanium mesh cages from C-3 to C-1 lateral masses (12-mm diameter); and CF8, removal of all 3 cages. A crosslink was added connecting the posterior rods for CF1, CF6, and CF8. Range-of-motion (ROM) differences between all groups were compared via repeated-measures ANOVA with paired comparisons using the Student t-test with a Tukey post hoc adjustment. A p < 0.05 indicated significance. RESULTS The addition of a central cage significantly increased FE rigidity compared with posterior instrumentation alone but had less of an effect in AR and LB. The addition of lateral cages did not significantly improve rigidity in any bending direction (CF6 vs CF7, p > 0.05). With posterior instrumentation alone (CF1 and CF2), C-2 corpectomy reduced bending rigidity in only the FE direction (p < 0.05). The removal of C-2 posterior elements in the presence of a C3-clivus cage did not affect the ROM in any bending mode (CF5 vs CF6, p > 0.05). A crosslink addition in CF1, CF6, and CF8 did not significantly affect primary or off-axis ROM (p > 0.05). CONCLUSIONS Study results indicated that posterior instrumentation alone with 3.5-mm rods is insufficient for stability restoration after a C-2 corpectomy. Either C3-1 or C3-clivus cages can correct instability introduced by C-2 removal in the presence of posterior instrumentation. The addition of lateral cages to a C3-clivus fusion construct may be unnecessary since it does not significantly improve rigidity in any direction.


Global Spine Journal | 2012

Construct Rigidity after Fatigue Loading in Pedicle Subtraction Osteotomy with or without Adjacent Interbody Structural Cages.

Vedat Deviren; Jessica A. Tang; Justin K. Scheer; Jenni M. Buckley; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames

Introduction Studies document rod fracture in pedicle subtraction osteotomy (PSO) settings where disk spaces were preserved above or adjacent to the PSO. This study compares the multidirectional bending rigidity and fatigue life of PSO segments with or without interbody support. Methods Twelve specimens received bilateral T12–S1 posterior fixation and L3 PSO. Six received extreme lateral interbody fusion (XLIF) cages in addition to PSO at L2–L3 and L3–L4; six had PSO only. Flexion-extension, lateral bending, and axial rotation (AR) tests were conducted up to 7.5 Newton-meters (Nm) for groups: (1) posterior fixation, (2) L3 PSO, (3) addition of cages (six specimens). Relative motion across the osteotomy (L2–L4) and entire fixation site (T12–S1) was measured. All specimens were then fatigue tested for 35K cycles. Results Regardingmultiaxial bending, there was a significant 25.7% reduction in AR range of motion across L2–L4 following addition of cages. Regarding fatigue bending, dynamic stiffness, though not significant (p = 0.095), was 22.2% greater in the PSO + XLIF group than in the PSO-only group. Conclusions Results suggest that placement of interbody cages in PSO settings has a potential stabilizing effect, which is modestly evident in the acute setting. Inserting cages in a second-stage surgery remains a viable option and may benefit patients in terms of recovery but additional clinical studies are necessary to confirm this.


Spine | 2011

Biomechanical analysis of osteotomy type and rod diameter for treatment of cervicothoracic kyphosis.

Justin K. Scheer; Jessica A. Tang; Jenni M. Buckley; Vedat Deviren; Murat Pekmezci; R. Trigg McClellan; Christopher P. Ames

Study Design. Biomechanical laboratory research. Objective. To characterize the structural stiffness of opening and closing wedge osteotomies and the independent effect of rod diameter. Summary of Background Data. Traditionally, C7 opening wedge osteotomy (OWO) has been performed for patients with ankylosing spondylitis. For patients without ankylosing spondylitis, closing wedge osteotomy (CWO) may be considered for more controlled closure. Biomechanical characteristics of the two osteotomy alternatives have not yet been analyzed. Methods. Nondestructive pure moment flexion/extension (FE), lateral bending (LB), and axial rotation (AR) tests were conducted to 4.5 Nm on cadaveric specimens (C4–T3). All specimens underwent posterior bilateral screw-rod fixation with 3.5 mm and 4.5 mm Ti rods, whereas half received OWO and half received CWO. Results. Independent of osteotomy type, constructs with 4.5 mm rods exhibited a significant increase in stiffness compared to 3.5 mm rods in all bending modes (P < 0.01). Relative to 3.5 mm rods, 4.5 mm constructs showed an increase in stiffness of 31 ± 12% for FE, 37 ± 39% for LB, and 31 ± 11% for AR. At the osteotomy site, there was a 43 ± 23% increase in FE stiffness, 45 ± 36% in LB, and 41 ± 17% in AR. Independent of rod diameter, CWO was significantly stiffer than OWO (42% for the construct and 56% across the osteotomy) in FE bending only (P < 0.05). Conclusion. The surgeon can expect a similar increase in stiffness in switching from 3.5 mm to 4.5 mm rod independent of osteotomy type. The increased stiffness of CWOs has an anatomic basis. OWOs disrupt the anterior longitudinal ligament (ALL) and leave a significant anterior gap whereas CWOs create a wedge through the vertebral body and leave the ALL and the discs above and below the osteotomy intact. The closure in CWOs leaves no anterior gap providing greater axial loading stability. This greater bone on bone contact in CWOs is likely a significant reason for the anterior stiffness and may provide greater fusion rates in the nonankylosing spondylitis patient population.

Collaboration


Dive into the Jessica A. Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justin K. Scheer

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Vedat Deviren

University of California

View shared research outputs
Top Co-Authors

Avatar

Murat Pekmezci

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bob S. Carter

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge