Rabeay Y.A. Hassan
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rabeay Y.A. Hassan.
Analytical Biochemistry | 2011
Rabeay Y.A. Hassan; Ursula Bilitewski
Candida albicans is an opportunistic fungal pathogen with comparably high respiratory activity. Thus, we established a viability test based on 2,6-dichlorophenolindophenol (DCIP), a membrane-permeable electron transfer agent. NADH dehydrogenases catalyze the reduction of DCIP by NADH, and the enzymatic activity can be determined either electrochemically via oxidation reactions of DCIP or photometrically. Among the specific respiratory chain inhibitors, only the complex I inhibitor rotenone decreased the DCIP signal from C. albicans, leaving residual activity of approximately 30%. Thus, the DCIP-reducing activity of C. albicans was largely dependent on complex I activity. C. albicans is closely related to the complex I-negative yeast Saccharomyces cerevisiae, which had previously been used in DCIP viability assays. Via comparative studies, in which we included the pathogenic complex I-negative yeast Candida glabrata, we could define assay conditions that allow a distinction of complex I-negative and -positive organisms. Basal levels of DCIP turnover by S.cerevisiae and C. glabrata were only 30% of those obtained from C. albicans but could be increased to the C. albicans level by adding glucose. No significant increases were observed with galactose. DCIP reduction rates from C. albicans were not further increased by any carbon source.
Biosensors and Bioelectronics | 2013
Rabeay Y.A. Hassan; Ursula Bilitewski
Despite advances made in the field, rapid detection methods for the human pathogen Candida albicans are still missing. In this regard, bio-electrochemical systems including electrochemical sensors and biosensors satisfy the increasing demand for rapid, reliable, and direct microbial analyses. In this study, the bioelectrochemical characteristics of C. albicans were investigated for use in an analytical system that determines the viability of the organisms. The electrochemical responses of viable and non-viable cells of C. albicans and Saccharomyces cerevisiae were monitored. Cyclic voltammograms (CV) showed an irreversible oxidation peak at about 750 mV that accounts for viable cells. The peak current increased at viable cell numbers ranging from 3 × 10(5) to 1.6 × 10(7)cells/ml, indicating that the amount of viable cells can be accurately quantified. To elucidate the underlying electron transfer processes, the influence of electron transfer chain (ETC) - inhibitors on the electrochemical behavior of the two organisms were investigated. Inhibition of the function of classical respiratory chain (CRC) led to a decrease in the electrochemical response, whereas the oxidation current increased when the alternative oxidase (AOX) pathway was blocked by salicylhydroxamic acid (SHA). Blocking the AOX pathway improved the electrochemical performance, suggesting an involvement in the CRC, with cytochrome c oxidase (COX) as a relevant protein complex. Mutants, in which components of COX were deleted, showed a lower electro-activity than the wild-type strain. Particularly, deletion of subunit COX5a almost completely abolished the electrochemical signal. We believe that this work can be utilized for the development of early detection assays and opens the door for new technological developments in the field of C. albicans.
Analytical and Bioanalytical Chemistry | 2016
Rabeay Y.A. Hassan; Ulla Wollenberger
Staphylococcus aureus is one of the most dangerous human pathogens and is the cause of numerous illnesses ranging from moderate skin infections to life-threatening diseases. Despite advances made in identifying microorganisms, rapid detection methods for the viability of bacteria are still missing. Here, we report a rapid electrochemical assay for cell viability combining the use of double redox mediators and multiwall carbon nanotubes-screen printed electrodes (MWCNTs-SPE), ferricyanide (FCN) and 2,6-dichlorophenolindophenol (DCIP), which served as electron shuttle to enable the bacterial-electrode communications. The current originating from the metabolically active cells was recorded for probing the activity of the intracellular redox centers. Blocking of the respiratory chain pathways with electron transfer inhibitors demonstrated the involvement of the electron transport chain in the reaction. A good correlation between the number of the metabolically active cells and the current was obtained. The proposed assay has been exploited for monitoring cell proliferation of S. aureus during the growth. The sensitivity of the detection method reached 0.1 OD600. Therefore, the technique described is promising for estimating the cell number, measuring the cell viability, and probing intracellular redox center(s).
Journal of Applied Microbiology | 2010
Rabeay Y.A. Hassan; K. Reinhardt; S. Hodde; Ursula Bilitewski
Aims: Metabolic pathways, e.g. biosynthesis of ergosterol or carbohydrate metabolism including respiration, are well‐known targets of several fungicides. With our study we wanted to prove that metabolite profiles can be used to classify fungicides according to their mode of action and that concentrations of key metabolites are changed even without detectable reduced growth rates.
Biosensors and Bioelectronics | 2017
Rabeay Y.A. Hassan; Moataz Mekawy; Pankaj Ramnani; Ashok Mulchandani
Microbial infections are rapidly increasing; however most of the existing microbiological and molecular detection methods are time consuming and/or cannot differentiate between the viable and dead cells which may overestimate the risk of infections. Therefore, a bioelectrochemical sensing platform with a high potential to the microbial-electrode interactions was designed based on decorated graphene oxide (GO) sheet with alumina (Al2O3) nanocrystals. GO-Al2O3 nanocomposite was synthesized using self-assembly of GO and Al2O3 and characterized using the scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), Raman-spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Enhancement of electrocatalytic activity of the composite-modified electrode was demonstrated. Thus, using the GO-Al2O3 nanocomposite modified electrode, the cell viability was determined by monitoring the bioelectrochemical response of the living microbial cells (bacteria and yeast) upon stimulation with carbon source. The bioelectrochemical assay was optimized to obtain high sensitivity and the method was applied to monitor cell viability and screen susceptibility of metabolically active cells (E. coli, B. subtilis, Enterococcus, P. aeruginosa and Salmonella typhi) to antibiotics such as ampicillin and kanamycin. Therefore, the developed assay is suitable for cell proliferation and cytotoxicity testing.
Sensors | 2017
Fatima Mustafa; Rabeay Y.A. Hassan; Silvana Andreescu
Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.
RSC Advances | 2016
Hala S. Abd El-Haleem; Amr Hefnawy; Rabeay Y.A. Hassan; Ashraf H. Badawi; Ibrahim M. El-Sherbiny
In this study, the synthesis, characterization and testing of new polymeric–metal oxide nanocomposites for enzymatic glucose biosensors were performed. Among various nano-composites, manganese dioxide-core–shell hyperbranched chitosan (MnO2–HBCs) provided rapid and high efficiency direct electron transfer from the redox active centre of an immobilized enzyme and screen printed electrode. The assay optimization was achieved after testing the effects of several factors such as type of crosslinking agent, accumulation potential, toxicity of heavy metals and interferences on the bioactivity of GOx. Results demonstrated sensitivity of the proposed method to detect inhibition effects of metal ions and also the response of agents interfering with glucose measurement. A chronoamperometric calibration curve was obtained, and the oxidation current of the enzymatically produced H2O2 was linearly dependent on glucose concentration with a detection limit of 7 μg mL−1. Thus, the clinical determination of glucose concentration was performed on blood samples and the results were correlated with a reference method. In conclusion, the current study suggests a new class of electrochemical biosensors and paves the way for further promising applications.
International Journal of Biological Macromolecules | 2016
Mohammed Sedki; Amr Hefnawy; Rabeay Y.A. Hassan; Ibrahim M. El-Sherbiny
The present study reports, for the first time, the development and use of core-shell amino-terminated chitosan (Cs) hyperbranched nanoparticles (HBCs-NH2 NPs) as a novel natural polymer-based electrode modifier for efficient electrochemical systems. The electrochemical activity of the developed HBCs-NH2 NPs as compared to Cs NPs was identified by standard oxidation-reduction reactions of ferricyanide. The oxidation-reduction peaks height was about twofold higher than the response of Cs-modified electrode. On the other hand, NADH oxidation at the nanostructured surfaces confirmed the electrocatalytic activity where the oxidation of NADH appeared at a lower overpotential (from 805mV to 635mV vs Ag/AgCl). Eventually, a diffusion-controlled process was confirmed from the scan rate effect.
Molecules | 2016
Shuna Cui; Rabeay Y.A. Hassan; Anna Heintz-Buschart; Ursula Bilitewski
The severity of infections caused by Candida albicans, the most common opportunistic human fungal pathogen, needs rapid and effective antifungal treatments. One of the effective ways is to control the virulence factors of the pathogen. Therefore, the current study examined the effects of genistein, a natural isoflavone present in soybeans, on C. albicans. The genistein-treated C. albicans cells were then exposed to macrophages. Although no inhibition effect on the growth rates of C. albicans was noted an enhancement of the immune response to macrophages has been observed, indicated by phagocytosis and release of cytokines TNF-α and IL-10. The effect of genistein on the enhanced phagocytosis can be mimicked by the fungicides fludioxonil or iprodione, which inhibit the histidine kinase Cos1p and lead to activation of HOG pathway. The western blot results showed a clear phosphorylation of Hog1p in the wild type strain of C. albicans after incubation with genistein. In addition, effects of genistein on the phosphorylation of Hog1p in the histidine kinase mutants Δcos1 and Δsln1 were also observed. Our results thus indicate a new bio-activity of genistein on C. albicans by activation of the HOG pathway of the human pathogen C. albicans.
Journal of Genetic Engineering and Biotechnology | 2018
Dena Z. Khater; K.M. El-Khatib; Rabeay Y.A. Hassan
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6 cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6 cm microbial fuel cells is about 946 and 791 mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3 cm, the power density is decreased from 108.3 mW m−2 to 24.5 mW m−2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791 mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.