Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel C. McMullan is active.

Publication


Featured researches published by Rachel C. McMullan.


Genetics | 2017

Genomes of the Mouse Collaborative Cross

Anuj Srivastava; Andrew P. Morgan; Maya L. Najarian; Vishal Kumar Sarsani; J. Sebastian Sigmon; John R. Shorter; Anwica Kashfeen; Rachel C. McMullan; Lucy H. Williams; Paola Giusti-Rodriguez; Martin T. Ferris; Patrick F. Sullivan; Pablo Hock; Darla R. Miller; Timothy A. Bell; Leonard McMillan; Gary A. Churchill; Fernando Pardo-Manuel de Villena

The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources.


PLOS Genetics | 2015

A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2

John P. Didion; Andrew P. Morgan; Amelia M.-F. Clayshulte; Rachel C. McMullan; Liran Yadgary; Petko M. Petkov; Timothy A. Bell; Daniel M. Gatti; James J. Crowley; Kunjie Hua; David L. Aylor; Ling Bai; Mark Calaway; Elissa J. Chesler; John E. French; Thomas R. Geiger; Terry J. Gooch; Theodore Garland; Alison H. Harrill; Kent W. Hunter; Leonard McMillan; Matt Holt; Darla R. Miller; Deborah A. O'Brien; Kenneth Paigen; Wenqi Pan; Lucy B. Rowe; Ginger D. Shaw; Petr Simecek; Patrick F. Sullivan

Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 – 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.


Molecular Biology and Evolution | 2016

R2d2 Drives Selfish Sweeps in the House Mouse

John P. Didion; Andrew P. Morgan; Liran Yadgary; Timothy A. Bell; Rachel C. McMullan; Lydia Ortiz de Solorzano; Janice Britton-Davidian; Karl J. Campbell; Riccardo Castiglia; Yung-Hao Ching; Amanda J. Chunco; James J. Crowley; Elissa J. Chesler; Daniel W. Förster; John E. French; Sofia I. Gabriel; Daniel M. Gatti; Theodore Garland; Eva B. Giagia-Athanasopoulou; Mabel D. Giménez; Sofia A. Grize; İslam Gündüz; Andrew Holmes; Heidi C. Hauffe; Jeremy S. Herman; James Holt; Kunjie Hua; Wesley J. Jolley; Anna K. Lindholm; María José López-Fuster

A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little evidence addresses whether “selfish” genes are capable of fixation—thereby leaving signatures identical to classical selective sweeps—despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes nonrandom segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2HC) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2HC rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2HC is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.


Physiological Reports | 2016

Long-term exercise in mice has sex-dependent benefits on body composition and metabolism during aging.

Rachel C. McMullan; Scott A. Kelly; Kunjie Hua; Brian K. Buckley; James E. Faber; Fernando Pardo-Manuel de Villena; Daniel Pomp

Aging is associated with declining exercise and unhealthy changes in body composition. Exercise ameliorates certain adverse age‐related physiological changes and protects against many chronic diseases. Despite these benefits, willingness to exercise and physiological responses to exercise vary widely, and long‐term exercise and its benefits are difficult and costly to measure in humans. Furthermore, physiological effects of aging in humans are confounded with changes in lifestyle and environment. We used C57BL/6J mice to examine long‐term patterns of exercise during aging and its physiological effects in a well‐controlled environment. One‐year‐old male (n = 30) and female (n = 30) mice were divided into equal size cohorts and aged for an additional year. One cohort was given access to voluntary running wheels while another was denied exercise other than home cage movement. Body mass, composition, and metabolic traits were measured before, throughout, and after 1 year of treatment. Long‐term exercise significantly prevented gains in body mass and body fat, while preventing loss of lean mass. We observed sex‐dependent differences in body mass and composition trajectories during aging. Wheel running (distance, speed, duration) was greater in females than males and declined with age. We conclude that long‐term exercise may serve as a preventive measure against age‐related weight gain and body composition changes, and that mouse inbred strains can be used to characterize effects of long‐term exercise and factors (e.g. sex, age) modulating these effects. These findings will facilitate studies on relationships between exercise and health in aging populations, including genetic predisposition and genotype‐by‐environment interactions.


Genetics | 2016

The Evolutionary Fates of a Large Segmental Duplication in Mouse.

Andrew P. Morgan; J. Matthew Holt; Rachel C. McMullan; Timothy A. Bell; Amelia M.-F. Clayshulte; John P. Didion; Liran Yadgary; David Thybert; Duncan T. Odom; Paul Flicek; Leonard McMillan; Fernando Pardo-Manuel de Villena

Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22. De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.


G3: Genes, Genomes, Genetics | 2016

Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection.

Elissa J. Chesler; Daniel M. Gatti; Andrew P. Morgan; Marjorie Strobel; Laura Trepanier; Denesa Oberbeck; Shannon McWeeney; Robert Hitzemann; Martin T. Ferris; Rachel C. McMullan; Amelia Clayshultle; Timothy A. Bell; Fernando Pardo-Manuel de Villena; Gary A. Churchill

Multi-parent populations (MPPs) capture and maintain the genetic diversity from multiple inbred founder strains to provide a resource for high-resolution genetic mapping through the accumulation of recombination events over many generations. Breeding designs that maintain a large effective population size with randomized assignment of breeders at each generation can minimize the impact of selection, inbreeding, and genetic drift on allele frequencies. Small deviations from expected allele frequencies will have little effect on the power and precision of genetic analysis, but a major distortion could result in reduced power and loss of important functional alleles. We detected strong transmission ratio distortion in the Diversity Outbred (DO) mouse population on chromosome 2, caused by meiotic drive favoring transmission of the WSB/EiJ allele at the R2d2 locus. The distorted region harbors thousands of polymorphisms derived from the seven non-WSB founder strains and many of these would be lost if the sweep was allowed to continue. To ensure the utility of the DO population to study genetic variation on chromosome 2, we performed an artificial selection against WSB/EiJ alleles at the R2d2 locus. Here, we report that we have purged the WSB/EiJ allele from the drive locus while preserving WSB/EiJ alleles in the flanking regions. We observed minimal disruption to allele frequencies across the rest of the autosomal genome. However, there was a shift in haplotype frequencies of the mitochondrial genome and an increase in the rate of an unusual sex chromosome aneuploidy. The DO population has been restored to genome-wide utility for genetic analysis, but our experience underscores that vigilant monitoring of similar genetic resource populations is needed to ensure their long-term utility.


Genes, Brain and Behavior | 2018

Perinatal nutrition interacts with genetic background to alter behavior in a parent-of-origin dependent manner in adult Collaborative Cross mice

Sarah Adams Schoenrock; Daniel Oreper; Joseph S. Farrington; Rachel C. McMullan; Robin Ervin; Miller; F. Pardo-Manuel De Villena; William Valdar; Lisa M. Tarantino

Previous studies in animal models and humans have shown that exposure to nutritional deficiencies in the perinatal period increases the risk of psychiatric disease. Less well understood is how such effects are modulated by the combination of genetic background and parent‐of‐origin (PO). To explore this, we exposed female mice from 20 Collaborative Cross (CC) strains to protein deficient, vitamin D deficient, methyl donor enriched or standard diet during the perinatal period. These CC females were then crossed to a male from a different CC strain to produce reciprocal F1 hybrid females comprising 10 distinct genetic backgrounds. The adult F1 females were then tested in the open field, light/dark, stress‐induced hyperthermia, forced swim and restraint stress assays. Our experimental design allowed us to estimate effects of genetic background, perinatal diet, PO and their interactions on behavior. Genetic background significantly affected all assessed phenotypes. Perinatal diet exposure interacted with genetic background to affect body weight, basal body temperature, anxiety‐like behavior and stress response. In 8 of 9 genetic backgrounds, PO effects were observed on multiple phenotypes. Additionally, we identified a small number of diet‐by‐PO effects on body weight, stress response, anxiety‐ and depressive‐like behavior. Our data show that rodent behaviors that model psychiatric disorders are affected by genetic background, PO and perinatal diet, as well as interactions among these factors.


bioRxiv | 2018

Reciprocal F1 hybrids of two inbred mouse strains reveal parent-of-origin and perinatal diet effects on behavior and expression

Daniel Oreper; Sarah Adams Schoenrock; Rachel C. McMullan; Robin Ervin; Joseph S. Farrington; Darla R. Miller; Fernando Pardo-Manuel de Villena; William Valdar; Lisa M. Tarantino

Parent-of-origin effects (POEs) in mammals typically arise from maternal effects or from imprinting. Mutations in imprinted genes have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. Nonetheless, POEs on complex traits such as behavior remain largely uncharacterized. Furthermore, although perinatal environmental exposures, such as nutrient deficiency, are known to modify both behavior and epigenetic effects generally, the architecture of environment-by-POE is almost completely unexplored. To study POE and environment-by-POE, we employ a relatively neglected but maximally powerful POE-detection system: a reciprocal F1 hybrid population. We exposed female NOD/ShiLtJxC57Bl/6J and C57Bl/6JxNOD/ShiLtJ mice, in utero, to one of four different diets, then after weaning recorded their whole-brain gene expression, as well as a set of behaviors that model psychiatric disease. Microarray expression data revealed an imprinting-enriched set of over a dozen genes subject to POE; the POE on the most significantly affected gene, Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Interestingly, Bayesian mediation analysis suggests Carmil1 expression suppresses behavioral POE, and Airn suppresses POE on Carmil1 expression. A significant diet-by-POE was observed on one behavior, one imprinted gene, and over a dozen non-imprinted genes. Beyond our particular results, our study demonstrates a reciprocal F1 hybrid framework for studying POE and environment-by-POE on behavior.


Physiological Reports | 2018

CC002/Unc females are mouse models of exercise-induced paradoxical fat response

Rachel C. McMullan; Martin T. Ferris; Timothy A. Bell; Vineet D. Menachery; Ralph S. Baric; Kunjie Hua; Daniel Pomp; Fernando Pardo-Manuel de Villena

Exercise results in beneficial health outcomes and protects against a variety of chronic diseases. However, U.S. exercise guidelines recommend identical exercise programs for everyone, despite individual variation in responses to these programs, including paradoxical fat gain. Experimental models of exercise‐induced paradoxical outcomes may enable the dissection of underlying physiological mechanisms as well as the evaluation of potential interventions. Whereas several studies have identified individual mice exhibiting paradoxical fat gain following exercise, no systematic effort has been conducted to identify and characterize models of paradoxical response. Strains from the Collaborative Cross (CC) genetic reference population were used due to its high levels of genetic variation, its reproducible nature, and the observation that the CC is a rich source of novel disease models, to assess the impact genetic background has on exercise responses. We identified the strain CC002/Unc as an exercise‐induced paradoxical fat response model in a controlled voluntary exercise study across multiple ages in female mice. We also found sex and genetic differences were consistent with this pattern in a study of forced exercise programs. These results provide a novel model for studies to determine the mechanisms behind paradoxical metabolic responses to exercise, and enable development of more rational personalized exercise recommendations based on factors such as age, sex, and genetic background.


bioRxiv | 2015

A selfish genetic element drives recurring selective sweeps in the house mouse

John P. Didion; Andrew P. Morgan; Liran Yadgary; Timothy A. Bell; Rachel C. McMullan; Lydia Ortiz de Solorzano; Janice Britton-Davidian; Karl J. Campbell; Riccardo Castiglia; Yung-Hao Ching; Amanda J. Chunco; James J. Crowley; Elissa J. Chesler; John E. French; Sofia I Gabriel; Daniel M. Gatti; Theodore Garland; Eva B. Giagia-Athanasopoulou; Mabel D. Giménez; Sofia A. Grize; İslam Gündüz; Andrew Holmes; Heidi C. Hauffe; Jeremy S. Herman; James Holt; Kunji Hua; Wesley J. Jolley; Anna K. Lindholm; María J López-Fuster; George P. Mitsainas

A selective sweep is the result of strong positive selection driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little empirical evidence addresses whether “selfish” genes are capable of fixation  thereby leaving signatures identical to classical selective sweeps  despite being neutral or deleterious to organismal fitness. We previously described R2d2, a large copy-number variant that causes non-random segregation of mouse Chromosome 2 in females due to meiotic drive. Here we show population-genetic data consistent with a selfish sweep driven by alleles of R2d2 with high copy number (R2d2HC) in natural populations. We replicate this finding in multiple closed breeding populations from six outbred backgrounds segregating for R2d2 alleles. We find that R2d2HC rapidly increases in frequency, and in most cases becomes fixed in significantly fewer generations than can be explained by genetic drift. R2d2HC is also associated with significantly reduced litter sizes in heterozygous mothers, making it a true selfish allele. Our data provide direct evidence of populations actively undergoing selfish sweeps, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effects on overall Darwinian fitness. Further study will reveal the incidence of selfish sweeps, and will elucidate the relative contributions of selfish genes, adaptation and genetic drift to evolution.A selective sweep is the result of strong positive selection rapidly driving newly occurring or standing genetic variants to fixation, and can dramatically alter the pattern and distribution of allelic diversity in a population or species. Population-level sequencing data have enabled discoveries of selective sweeps associated with genes involved in recent adaptations in many species. In contrast, much debate but little empirical evidence addresses whether “selfish” genes are capable of fixation, thereby leaving signatures identical to classical selective sweeps – despite being neutral or deleterious to organismal fitness. Here we show that R2d2, a large copy-number variant that causes non-random segregation of mouse Chromosome 2 during female meiosis due to meiotic drive, has driven recurrent selective sweeps while having no discernable effect on fitness. We tested multiple closed breeding populations from six outbred backgrounds and found that alleles of R2d2 with high copy number (R2d2HC) rapidly increase in frequency, and in most cases become fixed in significantly fewer generations than can be explained by genetic drift. A survey of 13 natural mouse populations in Europe and the United States revealed that R2d2HC alleles are circulating at intermediate frequencies in the wild; moreover, patterns of local haplotype diversity are consistent with recent positive selection. Our results provide direct evidence of populations actively undergoing selective sweeps driven by a selfish genetic element, and demonstrate that meiotic drive can rapidly alter the genomic landscape in favor of mutations with neutral or even negative effect on overall Darwinian fitness. Further study and updated models are required to clarify the relative contributions of selfish genes, adaptation and genetic drift to evolution.

Collaboration


Dive into the Rachel C. McMullan's collaboration.

Top Co-Authors

Avatar

Timothy A. Bell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Morgan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Daniel M. Gatti

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Darla R. Miller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elissa J. Chesler

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

John P. Didion

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kunjie Hua

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Leonard McMillan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Liran Yadgary

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James J. Crowley

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge