Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel E. Rempel is active.

Publication


Featured researches published by Rachel E. Rempel.


Nature Biotechnology | 2006

Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras

James O McNamara; Eran R. Andrechek; Yong Wang; Kristi D. Viles; Rachel E. Rempel; Eli Gilboa; Bruce A. Sullenger; Paloma H. Giangrande

Technologies that mediate targeted delivery of small interfering RNAs (siRNAs) are needed to improve their therapeutic efficacy and safety. Therefore, we have developed aptamer-siRNA chimeric RNAs capable of cell type–specific binding and delivery of functional siRNAs into cells. The aptamer portion of the chimeras mediates binding to PSMA, a cell-surface receptor overexpressed in prostate cancer cells and tumor vascular endothelium, whereas the siRNA portion targets the expression of survival genes. When applied to cells expressing PSMA, these RNAs are internalized and processed by Dicer, resulting in depletion of the siRNA target proteins and cell death. In contrast, the chimeras do not bind to or function in cells that do not express PSMA. These reagents also specifically inhibit tumor growth and mediate tumor regression in a xenograft model of prostate cancer. These studies demonstrate an approach for targeted delivery of siRNAs with numerous potential applications, including cancer therapeutics.


Molecular Cell | 2000

E2F4 and E2F5 Play an Essential Role in Pocket Protein–Mediated G1 Control

Stefan Gaubatz; Geoffrey J. Lindeman; Seiichi Ishida; Laszlo Jakoi; Joseph R. Nevins; David M. Livingston; Rachel E. Rempel

E2F transcription factors are major regulators of cell proliferation. The diversity of the E2F family suggests that individual members perform distinct functions in cell cycle control. E2F4 and E2F5 constitute a defined subset of the family. Until now, there has been little understanding of their individual biochemical and biological functions. Here, we report that simultaneous inactivation of E2F4 and E2F5 in mice results in neonatal lethality, suggesting that they perform overlapping functions during mouse development. Embryonic fibroblasts isolated from these mice proliferated normally and reentered from Go with normal kinetics compared to wild-type cells. However, they failed to arrest in G1 in response to p16INK4a. Thus, E2F4 and E2F5 are dispensable for cell cycle progression but necessary for pocket protein-mediated G1 arrest of cycling cells.


Molecular Cell | 2001

Myc requires distinct E2F activities to induce S phase and apoptosis.

Gustavo Leone; Rosalie Sears; Erich Huang; Rachel E. Rempel; Faison Nuckolls; Chi Hyun Park; Paloma H. Giangrande; Lizhao Wu; Harold I. Saavedra; Seth J. Field; Margaret A. Thompson; Haidi Yang; Yuko Fujiwara; Michael E. Greenberg; Stuart H. Orkin; Clay Smith; Joseph R. Nevins

Previous work has shown that the Myc transcription factor induces transcription of the E2F1, E2F2, and E2F3 genes. Using primary mouse embryo fibroblasts deleted for individual E2F genes, we now show that Myc-induced S phase and apoptosis requires distinct E2F activities. The ability of Myc to induce S phase is impaired in the absence of either E2F2 or E2F3 but not E2F1 or E2F4. In contrast, the ability of Myc to induce apoptosis is markedly reduced in cells deleted for E2F1 but not E2F2 or E2F3. From this data, we propose that the induction of specific E2F activities is an essential component in the Myc pathways that control cell proliferation and cell fate decisions.


Molecular Cell | 2000

Loss of E2F4 activity leads to abnormal development of multiple cellular lineages.

Rachel E. Rempel; M. Teresa Sáenz-Robles; Robert W. Storms; Scott G. Morham; Seiichi Ishida; Amber Engel; Laszlo Jakoi; Mona F. Melhem; James M. Pipas; Clay Smith; Joseph R. Nevins

We have generated mice deficient in E2F4 activity, the major form of E2F in many cell types. Analysis of newborn pups deficient in E2F4 revealed abnormalities in hematopoietic lineage development as well as defects in the development of the gut epithelium. Specifically, we observed a deficiency of various mature hematopoietic cell types together with an increased number of immature cells in several lineages. This was associated with an increased frequency of apoptotic cells. We also found a substantial reduction in the thickness of the gut epithelium that normally gives rise to crypts as well as a reduction in the density of villi. These observations suggest a critical role for E2F4 activity in controlling the maturation of cells in a number of tissues.


Current Biology | 1994

Cip1 blocks the initiation of DNA replication in Xenopus extracts by inhibition of cyclin-dependent kinases

Ulrich P. Strausfeld; Michael T. Howell; Rachel E. Rempel; James Maller; Tim Hunt; J. Julian Blow

BACKGROUND Cip1 is a 21 kD protein that interacts with and inhibits cyclin-dependent kinases (cdks). Expression of Cip1 is induced by the tumour suppressor p53, and tumour cells have greatly reduced levels of Cip1. As cdks are required for normal progression through the cell cycle, their inhibition by Cip1 may mediate the ability of p53 to block cell proliferation. Cip1 has also been shown to inhibit the DNA polymerase delta auxiliary factor PCNA (proliferating cell nuclear antigen), which is required for replication-fork elongation, and this could be an alternative mechanism by which p53-induced Cip1 blocks cell proliferation. RESULTS We have investigated the effect of Cip1 protein on chromosomal DNA replication, using cell-free extracts of Xenopus eggs that initiate and complete chromosome replication under normal cell-cycle control. Cip1 protein strongly inhibited an early stage of DNA replication in this system, and this inhibition was not complemented by extracts that had been affinity-depleted of cdks. In contrast, Cip1 did not inhibit the elongation of replication forks that had accumulated in the presence of aphidicolin. Cip1 inhibition of DNA replication was fully rescued by addition of cyclins A or E, but not cyclin B, cdk2 or PCNA. CONCLUSIONS Our results suggest that Cip1 specifically blocks the initiation of DNA replication by inhibition of a cyclin-dependent kinase (cdk2), but has no major effect on the elongation of preassembled replication forks. The ability of cyclin A or cyclin E to rescue the Cip1 inhibition suggests that these cyclins may play a direct role in the initiation of replication in the Xenopus system.


The EMBO Journal | 2004

Combinatorial gene control involving E2F and E Box family members

Paloma H. Giangrande; Wencheng Zhu; Rachel E. Rempel; Nina Laakso; Joseph R. Nevins

Various studies point to the potential role of combinatorial action of transcription factors as a mechanism to achieve the complexity of eukaryotic gene control with a finite number of regulatory proteins. Our previous work has focused on interactions involving the E2F family of transcription factors as an example of combinatorial gene control, leading to the identification of TFE3 and YY1 as transcription partners for several E2F proteins. We now show that additional E2F target genes share a common promoter architecture and are also regulated by the combined action of TFE3 and E2F3. In contrast, the thymidine kinase (TK‐1) promoter is also regulated by E2F3 but independent of TFE3. Other promoters exhibit distinct specificity in the interaction with E2F proteins that includes a role for E2F1 but not E2F3, examples where both E2F1 and E2F3 are seen to interact, and promoters that are regulated by TFE3 but independent of an E2F. We propose that these examples of combinatorial interactions involving E2F proteins provide a basis for the specificity of transcription control in the Rb/E2F pathway.


Cancer Research | 2008

Utilization of Pathway Signatures to Reveal Distinct Types of B Lymphoma in the Eμ-myc Model and Human Diffuse Large B-Cell Lymphoma

Seiichi Mori; Rachel E. Rempel; Jeffrey T. Chang; Guang Yao; Anand S. Lagoo; Anil Potti; Andrea Bild; Joseph R. Nevins

The Emu-myc transgenic mouse has provided a valuable model for the study of B-cell lymphoma. Making use of gene expression analysis and, in particular, expression signatures of cell signaling pathway activation, we now show that several forms of B lymphoma can be identified in the Emu-myc mice associated with time of tumor onset. Furthermore, one form of Emu-myc tumor with pre-B character is shown to resemble human Burkitt lymphoma, whereas others exhibit more differentiated B-cell characteristics and show similarity with human diffuse large B-cell lymphoma in the pattern of gene expression, as well as oncogenic pathway activation. Importantly, we show that signatures of oncogenic pathway activity provide further dissection of the spectrum of diffuse large B-cell lymphoma, identifying a subset of patients who have very poor prognosis and could benefit from more aggressive or novel therapeutic strategies. Taken together, these studies provide insight into the complexity of the oncogenic process and a novel strategy for dissecting the heterogeneity of B lymphoma.


Development | 2008

Patterns of cell signaling pathway activation that characterize mammary development

Eran R. Andrechek; Seiichi Mori; Rachel E. Rempel; Jeffrey T. Chang; Joseph R. Nevins

Previous work has detailed the histological and biochemical changes associated with mammary development and remodeling. We have now made use of gene expression profiling, and in particular of the previously described signatures of cell signaling pathway activation, to explore the events associated with mammary gland development. We find that there is elevated E2F-specific pathway activity prior to lactation and relatively low levels of other important signaling pathways, such as RAS, MYC and SRC. Upon lactation and continuing into the involution phase, these patterns reverse with a dramatic increase in RAS, SRC and MYC pathway activity and a decline in E2F activity. At the end of involution, these patterns return to that of the adult non-lactating mammary gland. The importance of the changes in E2F pathway activity, particularly during the proliferative phase of mammary development, was confirmed through the analysis of mice deficient for various E2F proteins. Taken together, these results reveal a complex pattern of pathway activity in relation to the various phases of mammary gland development.


Cell | 2017

Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma

Anupama Reddy; Jenny Zhang; Nicholas S. Davis; Andrea B. Moffitt; Cassandra Love; Alexander Waldrop; Sirpa Leppä; Annika Pasanen; Leo Meriranta; Marja-Liisa Karjalainen-Lindsberg; Peter Nørgaard; Mette Pedersen; Anne O. Gang; Estrid Høgdall; Tayla Heavican; Waseem Lone; Javeed Iqbal; Qiu Qin; Guojie Li; So Young Kim; Jane Healy; Kristy L. Richards; Yuri Fedoriw; Leon Bernal-Mizrachi; Jean L. Koff; Ashley D. Staton; Christopher R. Flowers; Ora Paltiel; Neta Goldschmidt; Maria Calaminici

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Distinct roles of E2F proteins in vascular smooth muscle cell proliferation and intimal hyperplasia

Paloma H. Giangrande; JianXin Zhang; Alice Tanner; Andrea D. Eckhart; Rachel E. Rempel; Eran R. Andrechek; Juliana M. Layzer; Janelle R. Keys; Per-Otto Hagen; Joseph R. Nevins; Walter J. Koch; Bruce A. Sullenger

Intimal hyperplasia (IH) and restenosis limit the long-term utility of bypass surgery and angioplasty due to pathological proliferation and migration of vascular smooth muscle cells (VSMCs) into the intima of treated vessels. Consequently, much attention has been focused on developing inhibitory agents that reduce this pathogenic process. The E2F transcription factors are key cell cycle regulators that play important roles in modulating cell proliferation and cell fate. Nonselective E2F inhibitors have thus been extensively evaluated for this purpose. Surprisingly, these E2F inhibitors have failed to reduce IH. These findings prompted us to evaluate the roles of different E2Fs during IH to determine how selective targeting of E2F isoforms impacts VSMC proliferation. Importantly, we show that E2F3 promotes proliferation of VSMCs leading to increased IH, whereas E2F4 inhibits this pathological response. Furthermore, we use RNA probes to show that selective inhibition of E2F3, not global inhibition of E2F activity, significantly reduces VSMC proliferation and limits IH in murine bypass grafts.

Collaboration


Dive into the Rachel E. Rempel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javeed Iqbal

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge