Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane Healy is active.

Publication


Featured researches published by Jane Healy.


Cold Spring Harbor Perspectives in Biology | 2009

Membrane Domains Based on Ankyrin and Spectrin Associated with Cell–Cell Interactions

Vann Bennett; Jane Healy

Nodes of Ranvier and axon initial segments of myelinated nerves, sites of cell-cell contact in early embryos and epithelial cells, and neuromuscular junctions of skeletal muscle all perform physiological functions that depend on clustering of functionally related but structurally diverse ion transporters and cell adhesion molecules within microdomains of the plasma membrane. These specialized cell surface domains appeared at different times in metazoan evolution, involve a variety of cell types, and are populated by distinct membrane-spanning proteins. Nevertheless, recent work has shown that these domains all share on their cytoplasmic surfaces a membrane skeleton comprised of members of the ankyrin and spectrin families. This review will summarize basic features of ankyrins and spectrins, and will discuss emerging evidence that these proteins are key players in a conserved mechanism responsible for assembly and maintenance of physiologically important domains on the surfaces of diverse cells.


Cell | 2017

Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma

Anupama Reddy; Jenny Zhang; Nicholas S. Davis; Andrea B. Moffitt; Cassandra Love; Alexander Waldrop; Sirpa Leppä; Annika Pasanen; Leo Meriranta; Marja-Liisa Karjalainen-Lindsberg; Peter Nørgaard; Mette Pedersen; Anne O. Gang; Estrid Høgdall; Tayla Heavican; Waseem Lone; Javeed Iqbal; Qiu Qin; Guojie Li; So Young Kim; Jane Healy; Kristy L. Richards; Yuri Fedoriw; Leon Bernal-Mizrachi; Jean L. Koff; Ashley D. Staton; Christopher R. Flowers; Ora Paltiel; Neta Goldschmidt; Maria Calaminici

Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease.


Science Signaling | 2010

Cholinergic Augmentation of Insulin Release Requires Ankyrin-B

Jane Healy; Kent R. Nilsson; Hans E. Hohmeier; Jelena P. Berglund; Jonathan Q. Davis; Janis A. Hoffman; Martin Köhler; Luo Sheng Li; Per-Olof Berggren; Christopher B. Newgard; Vann Bennett

The scaffolding protein ankyrin-B is needed for maximal insulin release, and loss of function is a risk factor for diabetes. Risk Factor for Diabetes In addition to the glucose that enters the bloodstream, the parasympathetic nervous system also stimulates the pancreas to secrete insulin in response to eating a meal. Healy et al. show that loss of a single copy of the gene encoding ankyrin-B (ankB) in mice impaired insulin secretion in response to ingested glucose, causing glucose intolerance. In isolated pancreatic islets, ankB haploinsufficiency resulted in reduced abundance of the inositol trisphosphate receptor (IP3R), a calcium channel localized to the endoplasmic reticulum, and impaired calcium signaling in response to cholinergic stimulation. Although islets secrete insulin in response to glucose, the addition of a cholinergic agonist (to mimic parasympathetic stimulation) enhances the amount of insulin released. Islets from the ankB haploinsufficient mice failed to show this potentiation of insulin secretion. Healy et al. also found that, in humans, a loss-of-function mutation in AnkB, which is associated with heart disease, was also associated with diabetes. Thus, mutations in this scaffolding protein that cause aberrant calcium signaling may be a risk factor in multiple diseases. Parasympathetic stimulation of pancreatic islets augments glucose-stimulated insulin secretion by inducing inositol trisphosphate receptor (IP3R)–mediated calcium ion (Ca2+) release. Ankyrin-B binds to the IP3R and is enriched in pancreatic beta cells. We found that ankyrin-B–deficient islets displayed impaired potentiation of insulin secretion by the muscarinic agonist carbachol, blunted carbachol-mediated intracellular Ca2+ release, and reduced the abundance of IP3R. Ankyrin-B–haploinsufficient mice exhibited hyperglycemia after oral ingestion but not after intraperitoneal injection of glucose, consistent with impaired parasympathetic potentiation of glucose-stimulated insulin secretion. The R1788W mutation of ankyrin-B impaired its function in pancreatic islets and is associated with type 2 diabetes in Caucasians and Hispanics. Thus, defective glycemic regulation through loss of ankyrin-B–dependent stabilization of IP3R is a potential risk factor for type 2 diabetes.


PLOS ONE | 2007

Ankyrin-B Syndrome: Enhanced Cardiac Function Balanced by Risk of Cardiac Death and Premature Senescence

Peter J. Mohler; Jane Healy; Hui Xue; Annibale A. Puca; Crystal F. Kline; R. Rand Allingham; Evangelia G. Kranias; Howard A. Rockman; Vann Bennett

Here we report the unexpected finding that specific human ANK2 variants represent a new example of balanced human variants. The prevalence of certain ANK2 (encodes ankyrin-B) variants range from 2 percent of European individuals to 8 percent in individuals from West Africa. Ankyrin-B variants associated with severe human arrhythmia phenotypes (eg E1425G, V1516D, R1788W) were rare in the general population. Variants associated with less severe clinical and in vitro phenotypes were unexpectedly common. Studies with the ankyrin-B+/− mouse reveal both benefits of enhanced cardiac contractility, as well as costs in earlier senescence and reduced lifespan. Together these findings suggest a constellation of traits that we term “ankyrin-B syndrome”, which may contribute to both aging-related disorders and enhanced cardiac function.


Journal of Experimental Medicine | 2017

Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2

Andrea B. Moffitt; Sarah L. Ondrejka; Matthew McKinney; Rachel E. Rempel; John R. Goodlad; Chun Huat Teh; Sirpa Leppä; Susanna Mannisto; Panu E. Kovanen; Eric Tse; Rex K.H. Au-Yeung; Yok-Lam Kwong; Gopesh Srivastava; Javeed Iqbal; Jiayu Yu; Kikkeri N. Naresh; Diego Villa; Randy D. Gascoyne; Jonathan W. Said; Magdalena Czader; Amy Chadburn; Kristy L. Richards; Deepthi Rajagopalan; Nicholas S. Davis; Eileen C. Smith; Brooke C. Palus; Tiffany Tzeng; Jane Healy; Patricia L. Lugar; Jyotishka Datta

Enteropathy-associated T cell lymphoma (EATL) is a lethal, and the most common, neoplastic complication of celiac disease. Here, we defined the genetic landscape of EATL through whole-exome sequencing of 69 EATL tumors. SETD2 was the most frequently silenced gene in EATL (32% of cases). The JAK-STAT pathway was the most frequently mutated pathway, with frequent mutations in STAT5B as well as JAK1, JAK3, STAT3, and SOCS1. We also identified mutations in KRAS, TP53, and TERT. Type I EATL and type II EATL (monomorphic epitheliotropic intestinal T cell lymphoma) had highly overlapping genetic alterations indicating shared mechanisms underlying their pathogenesis. We modeled the effects of SETD2 loss in vivo by developing a T cell–specific knockout mouse. These mice manifested an expansion of &ggr;&dgr; T cells, indicating novel roles for SETD2 in T cell development and lymphomagenesis. Our data render the most comprehensive genetic portrait yet of this uncommon but lethal disease and may inform future classification schemes.


Journal of Clinical Investigation | 2015

Ankyrin-B metabolic syndrome combines age-dependent adiposity with pancreatic β cell insufficiency

Damaris Nadia Lorenzo; Jane Healy; Janell Hostettler; Jonathan Q. Davis; Jiayu Yang; Chao Wang; Hans E. Hohmeier; Mingjie Zhang; Vann Bennett

Rare functional variants of ankyrin-B have been implicated in human disease, including hereditary cardiac arrhythmia and type 2 diabetes (T2D). Here, we developed murine models to evaluate the metabolic consequences of these alterations in vivo. Specifically, we generated knockin mice that express either the human ankyrin-B variant R1788W, which is present in 0.3% of North Americans of mixed European descent and is associated with T2D, or L1622I, which is present in 7.5% of African Americans. Young AnkbR1788W/R1788W mice displayed primary pancreatic β cell insufficiency that was characterized by reduced insulin secretion in response to muscarinic agonists, combined with increased peripheral glucose uptake and concomitantly increased plasma membrane localization of glucose transporter 4 (GLUT4) in skeletal muscle and adipocytes. In contrast, older AnkbR1788W/R1788W and AnkbL1622I/L1622I mice developed increased adiposity, a phenotype that was reproduced in cultured adipocytes, and insulin resistance. GLUT4 trafficking was altered in animals expressing mutant forms of ankyrin-B, and we propose that increased cell surface expression of GLUT4 in skeletal muscle and fatty tissue of AnkbR1788W/R1788W mice leads to the observed age-dependent adiposity. Together, our data suggest that ankyrin-B deficiency results in a metabolic syndrome that combines primary pancreatic β cell insufficiency with peripheral insulin resistance and is directly relevant to the nearly one million North Americans bearing the R1788W ankyrin-B variant.


Blood | 2016

GNA13 loss in germinal center B cells leads to impaired apoptosis and promotes lymphoma in vivo

Jane Healy; Adrienne Nugent; Rachel E. Rempel; Andrea B. Moffitt; Nicholas S. Davis; Xiaoyu Jiang; Jennifer R. Shingleton; Jenny Zhang; Cassandra Love; Jyotishka Datta; Matthew E. McKinney; Tiffany Tzeng; Nina Wettschureck; Stefan Offermanns; Katelyn A. Walzer; Jen-Tsan Chi; Suhail Ahmed Kabeer Rasheed; Patrick J. Casey; Izidore S. Lossos; Sandeep S. Dave

GNA13 is the most frequently mutated gene in germinal center (GC)-derived B-cell lymphomas, including nearly a quarter of Burkitt lymphoma and GC-derived diffuse large B-cell lymphoma. These mutations occur in a pattern consistent with loss of function. We have modeled the GNA13-deficient state exclusively in GC B cells by crossing the Gna13 conditional knockout mouse strain with the GC-specific AID-Cre transgenic strain. AID-Cre(+) GNA13-deficient mice demonstrate disordered GC architecture and dark zone/light zone distribution in vivo, and demonstrate altered migration behavior, decreased levels of filamentous actin, and attenuated RhoA activity in vitro. We also found that GNA13-deficient mice have increased numbers of GC B cells that display impaired caspase-mediated cell death and increased frequency of somatic hypermutation in the immunoglobulin VH locus. Lastly, GNA13 deficiency, combined with conditional MYC transgene expression in mouse GC B cells, promotes lymphomagenesis. Thus, GNA13 loss is associated with GC B-cell persistence, in which impaired apoptosis and ongoing somatic hypermutation may lead to an increased risk of lymphoma development.


Journal of Cell Biology | 2008

Being there: cellular targeting of voltage-gated sodium channels in the heart

Vann Bennett; Jane Healy

Voltage-gated sodium (Na(v)) channels in cardiomyocytes are localized in specialized membrane domains that optimize their functions in propagating action potentials across cell junctions and in stimulating voltage-gated calcium channels located in T tubules. Mutation of the ankyrin-binding site of Na(v)1.5, the principal Na(v) channel in the heart, was previously known to cause cardiac arrhythmia and the retention of Na(v)1.5 in an intracellular compartment in cardiomyocytes. Conclusive evidence is now provided that direct interaction between Na(v)1.5 and ankyrin-G is necessary for the expression of Na(v)1.5 at the cardiomyocyte cell surface.


Trends in Molecular Medicine | 2008

Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin

Vann Bennett; Jane Healy


Current Topics in Microbiology and Immunology | 2015

The Role of EBV in the Pathogenesis of Diffuse Large B Cell Lymphoma.

Jane Healy; Sandeep S. Dave

Collaboration


Dive into the Jane Healy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristy L. Richards

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge