Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel J. Derscheid is active.

Publication


Featured researches published by Rachel J. Derscheid.


Virology | 2015

Pathogenicity and pathogenesis of a United States porcine deltacoronavirus cell culture isolate in 5-day-old neonatal piglets

Qi Chen; Phillip C. Gauger; Molly Stafne; Joseph T. Thomas; Paulo Arruda; Eric R. Burrough; Darin M. Madson; Joseph Brodie; Drew R. Magstadt; Rachel J. Derscheid; Michael Welch; Jianqiang Zhang

Abstract Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2009–2010 and reported in United States swine for the first time in February 2014. However, diagnostic tools other than polymerase chain reaction for PDCoV detection were lacking and Koch׳s postulates had not been fulfilled to confirm the pathogenic potential of PDCoV. In the present study, PDCoV peptide-specific rabbit antisera were developed and used in immunofluorescence and immunohistochemistry assays to assist PDCoV diagnostics. The pathogenicity and pathogenesis of PDCoV was investigated following orogastric inoculation of 5-day-old piglets with a plaque-purified PDCoV cell culture isolate (3×104 TCID50 per pig). The PDCoV-inoculated piglets developed mild to moderate diarrhea, shed increasing amount of virus in rectal swabs from 2 to 7 days post inoculation, and developed macroscopic and microscopic lesions in small intestines with viral antigen confirmed by immunohistochemistry staining. This study experimentally confirmed PDCoV pathogenicity and characterized PDCoV pathogenesis in neonatal piglets.


Veterinary Clinics of North America-food Animal Practice | 2010

Innate Immunology of Bovine Respiratory Disease

Mark R. Ackermann; Rachel J. Derscheid; James A. Roth

There are a variety of factors and conditions that predispose cattle to pneumonia. Cattle have anatomic and cellular differences from humans and other species and are managed in groups/herds, all of which can increase susceptibility to microbial pathogens. This article highlights the basic innate immune response of the respiratory tract and newer developments in the understanding of adaptive immune responses of the bovine respiratory tract, placing special emphasis on features unique to cattle.


Viruses | 2012

Perinatal Lamb Model of Respiratory Syncytial Virus (RSV) Infection

Rachel J. Derscheid; Mark R. Ackermann

Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. Many animal models are used to study RSV, but most studies investigate disease in adult animals which does not address the unique physiology and immunology that makes infants more susceptible. The perinatal (preterm and term) lamb is a useful model of infant RSV disease as lambs have similar pulmonary structure including airway branching, Clara and type II cells, submucosal glands and Duox/lactoperoxidase (LPO) oxidative system, and prenatal alveologenesis. Lambs can be born preterm (90% gestation) and survive for experimentation although both preterm and term lambs are susceptible to ovine, bovine and human strains of RSV and develop clinical symptoms including fever, tachypnea, and malaise as well as mild to moderate gross and histologic lesions including bronchiolitis with epithelial injury, neutrophil infiltration and syncytial cell formation. RSV disease in preterm lambs is more severe than in term lambs; disease is progressively less in adults and age-dependent susceptibility is a feature similar to humans. Innate and adaptive immune responses by perinatal lambs closely parallel those of infants. The model is used to test therapeutic regimens, risk factors such as maternal ethanol consumption, and formalin inactivated RSV vaccines.


PLOS ONE | 2013

Effects of formalin-inactivated respiratory syncytial virus (FI-RSV) in the perinatal lamb model of RSV.

Rachel J. Derscheid; Jack M. Gallup; Cory J. Knudson; Steven M. Varga; Drew D. Grosz; Albert G. van Geelen; Shannon J. Hostetter; Mark R. Ackermann

Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. There are currently no licensed vaccines or effective antivirals. The lack of a vaccine is partly due to increased caution following the aftermath of a failed clinical trial of a formalin-inactivated RSV vaccine (FI-RSV) conducted in the 1960’s that led to enhanced disease, necessitating hospitalization of 80% of vaccine recipients and resulting in two fatalities. Perinatal lamb lungs are similar in size, structure and physiology to those of human infants and are susceptible to human strains of RSV that induce similar lesions as those observed in infected human infants. We sought to determine if perinatal lambs immunized with FI-RSV would develop key features of vaccine-enhanced disease. This was tested in colostrum-deprived lambs immunized at 3–5 days of age with FI-RSV followed two weeks later by RSV infection. The FI-RSV-vaccinated lambs exhibited several key features of RSV vaccine-enhanced disease, including reduced RSV titers in bronchoalveolar lavage fluid and lung, and increased infiltration of peribronchiolar and perivascular lymphocytes compared to lambs either undergoing an acute RSV infection or naïve controls; all features of RSV vaccine-enhanced disease. These results represent a first step proof-of-principle demonstration that the lamb can develop altered responses to RSV following FI-RSV vaccination. The lamb model may be useful for future mechanistic studies as well as the assessment of RSV vaccines designed for infants.


American Journal of Respiratory Cell and Molecular Biology | 2013

Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity.

Rachel J. Derscheid; Albert G. van Geelen; Abigail R. Berkebile; Jack M. Gallup; Shannon J. Hostetter; Botond Banfi; Paul B. McCray; Mark R. Ackermann

Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN(-)), and secreted lactoperoxidase (LPO). The LPO-catalyzed reaction between H2O2 and SCN(-) yields the bactericidal hypothiocyanite (OSCN(-)) in airway surface liquid (ASL). Although SCN(-) is the physiological substrate of LPO, the Duox/LPO/halide system can generate hypoiodous acid when the iodide (I(-)) concentration is elevated in ASL. Because hypoiodous acid, but not OSCN(-), inactivates respiratory syncytial virus (RSV) in cell culture, we used a lamb model of RSV to test whether potassium iodide (KI) could enhance this system in vivo. Newborn lambs received KI by intragastric gavage or were left untreated before intratracheal inoculation of RSV. KI treatment led to a 10-fold increase in ASL I(-) concentration, and this I(-) concentration was approximately 30-fold higher than that measured in the serum. Also, expiratory effort, gross lung lesions, and pulmonary expression of an RSV antigen and IL-8 were reduced in the KI-treated lambs as compared with nontreated control lambs. Inhibition of LPO activity significantly increased lesions, RSV mRNA, and antigen. Similar experiments in 3-week-old lambs demonstrated that KI administration was associated with reduced gross lesions, decreased RSV titers in bronchoalveolar lavage fluid, and reduced RSV antigen expression. Overall, these data indicate that high-dose KI supplementation can be used in vivo to lessen the severity of RSV infections, potentially through the augmentation of mucosal oxidative defenses.


BioResearch Open Access | 2014

Human respiratory syncytial virus memphis 37 causes acute respiratory disease in perinatal lamb lung.

Rachel J. Derscheid; Albert G. van Geelen; Jack M. Gallup; Thomas Kienzle; Daniel A. Shelly; tomas Cihlar; Robert R. King; Mark R. Ackermann

Abstract Respiratory syncytial virus (RSV) is the leading cause of hospitalization due to respiratory illness among infants and young children of industrialized countries. There is a lack of understanding of the severe disease mechanisms as well as limited treatment options, none of which are fully satisfactory. This is partly due to lack of a relevant animal model of perinatal RSV infection that mimics moderate to severe disease in infants. We and others have shown mild disease in perinatal lambs with either a bovine or a human A2 strain of RSV. The Memphis 37 clinical strain of human RSV has been used to produce mild to moderate upper respiratory disease in healthy adult volunteers. We hypothesized that the Memphis 37 strain of RSV would infect perinatal lambs and produce clinical disease similar to that in human infants. Perinatal (3- to 5-day-old) lambs were inoculated intranasally with 2 mL/nostril of 1×105 focus-forming units (FFU)/mL (n=2) or 2.1×108 FFU/mL (n=3) of RSV Memphis 37. Clinical signs, gross and histological lesions, and immune and inflammatory responses were assessed. Memphis 37 caused moderate to severe gross and histologic lesions along with increased mRNA expression of macrophage inflammatory protein. Clinically, four of the five infected lambs had a mild to severe increase in expiratory effort. Intranasally administered RSV strain Memphis 37 infects neonatal lambs with gross, histologic, and immune responses similar to those observed in human infants.


Genome Announcements | 2015

Full-Length Genome Sequences of Senecavirus A from Recent Idiopathic Vesicular Disease Outbreaks in U.S. Swine

Jianqiang Zhang; Pablo Piñeyro; Qi Chen; Ying Zheng; Ganwu Li; Christopher Rademacher; Rachel J. Derscheid; Baoqing Guo; Kyoung-Jin Yoon; Darin M. Madson; Phillip C. Gauger; Kent J. Schwartz; Karen M. Harmon; Daniel Linhares; Rodger G. Main

ABSTRACT Since July 2015, vesicular lesions affecting growing pigs and sows accompanied with neonatal mortality have been reported in multiple U.S. states. Senecavirus A has been consistently detected from these cases. The complete genome sequences of 3 recent U.S. Senecavirus A isolates were determined to further characterize this virus.


Veterinary Pathology | 2013

The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection

Rachel J. Derscheid; Mark R. Ackermann

The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens.


BMC Research Notes | 2014

Sucrose stabilization of Respiratory Syncytial Virus (RSV) during nebulization and experimental infection

Drew D. Grosz; Albert G. van Geelen; Jack M. Gallup; Shannon J. Hostetter; Rachel J. Derscheid; Mark R. Ackermann

BackgroundRespiratory syncytial virus (RSV) is a common respiratory pathogen that can cause severe pneumonia. In vivo studies of RSV can be difficult due to variation in viral infection and disease severity in some animal models. Factors that may contribute to the variation are decreases in viral titer due to preparation and storage and method of virus administration. Nebulization is one method of RSV administration that provides even distribution of virus to all lung lobes; however, the exact quantity of the virus killed by nebulization is not defined. To test the hypothesis that sucrose enhances RSV stability and infectivity, a series of in vitro experiments were conducted with RSV strain Memphis 37 stored at varying concentrations (0%, 3%, 5%, 8%, 10%, 15%, and 20%) of sucrose as a possible cryo- and nebulization protectant. The optimal in vitro concentration was then assessed in vivo in a lamb model.MethodsPrior to titering the virus on HEp-2 cells, the various virus solutions were subjected to one freeze-thaw cycle and one nebulization cycle. Forty-eight hours after viral plating, infectious foci were detected and counted using immunofluorescent imaging. Titers were determined after freeze-thaw and after freeze-thaw followed by nebulization, then compared to the stock titers (before freezing) as well as to one another to determine the loss of infectivity. To further test this in vivo, lambs 2 to 3-days-old were infected via nebulization with RSV using inoculate containing either 20% sucrose or no sucrose followed by assessments of infection severity.ResultsNebulization of virus in 0% sucrose resulted in a 0.580 log reduction in infectivity while virus in 20% sucrose exhibited a 0.297 log reduction. In vivo studies demonstrated that 20% sucrose enhanced RSV lesions and antigen distribution.ConclusionsThe data suggests that both nebulization and freeze-thawing of RSV in the absence of sucrose cause unacceptable losses in viral infectivity and that sucrose acts as a RSV protectant in both regards.


Immunological Investigations | 2012

Ontogeny of the Immune Response in the Ovine Lung

Fatoumata B. Sow; Jack M. Gallup; Rachel J. Derscheid; Subramaniam Krishnan; Mark R. Ackermann

Perinatal lambs are increasingly appreciated as a model to study respiratory infections of premature and newborn human infants. To explore the relationship between developmental age and immunological competence in the respiratory tract, the basal levels of expression of genes involved in innate and adaptive immune functions in the lung were examined in pre-term lambs (115 days and 130 days), at birth (145 days) and post-partum (15 days and 3 years old). Our results show that innate immune genes (TLRs-3, -4, -7, -8; SP-A, SP-D, and SBD1) were differentially expressed through development; cytokines (IFN-γ, IL-6, TNF-α) and chemokines (IL-8, MCP-1) were low during gestation and post-partum but maximal at birth; genes involved in adaptive immunity (PD-1, PD-L1, TGF-β) were present in pre-term and newborn lung, but were lower in adult lung. The results suggest that pre-term and neonatal lambs may be able to mount an immune response following infection, but that the response may not be optimal. Our studies provide an important set of comparative data on the ontogeny of lung immunity in sheep and set a framework for studies on age-dependent susceptibility to respiratory pathogens.

Collaboration


Dive into the Rachel J. Derscheid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Chen

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. R. Stark

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Jianfa Bai

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge