Rachel J. Williams
UCL Eastman Dental Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel J. Williams.
Infection and Immunity | 2000
Rachel J. Williams; John M. Ward; Brian Henderson; Stephen Poole; Bernard P. O'Hara; Michael Wilson; Sean P. Nair
ABSTRACT We report the discovery of a novel genetic locus withinStaphylococcus aureus that encodes a cluster of at least five exotoxin-like proteins. Designated the staphylococcal exotoxin-like genes 1 to 5 (set1 to set5), these open reading frames have between 38 and 53% homology to each other. All five proteins contain consensus sequences that are found in staphylococcal and streptococcal exotoxins and toxic shock syndrome toxin 1 (TSST-1). However, the SETs have only limited overall sequence homology to the enterotoxins and TSST-1 and thus represent a novel family of exotoxin-like proteins. The prototypic gene in this cluster,set1, has been cloned and expressed. Recombinant SET1 stimulated the production of interleukin-1β, interleukin-6, and tumor necrosis factor alpha by human peripheral blood mononuclear cells. PCR analysis revealed that set1 was distributed among other strains of S. aureus but not in the other staphylococcal species examined. Sequence analysis of the set1 genes from different strains revealed at least three allelic variants. The protein products of these allelic variants displayed a 100-fold difference in their cytokine-inducing potency. The distribution of allelic variants of the set genes among strains of S. aureus may contribute to differences in the pathogenic potential of this bacterium.
Infection and Immunity | 2001
Saddif Ahmed; Sajeda Meghji; Rachel J. Williams; Brian Henderson; Jeremy H. Brock; Sean P. Nair
ABSTRACT Staphylococcus aureus is a major pathogen of bone that has been shown to be internalized by osteoblasts via a receptor-mediated pathway. Here we report that there are strain-dependent differences in the uptake of S. aureus by osteoblasts. An S. aureus septic arthritis isolate, LS-1, was internalized some 10-fold more than the laboratory strain 8325-4. Disruption of the genes for the fibronectin binding proteins in these two strains of S. aureus blocked their ability to be internalized by osteoblasts, thereby demonstrating the essentiality of these genes in this process. However, there were no differences in the capacity of these two strains to bind to fibronectin or osteoblasts. Analysis of the kinetics of internalization of the two strains by osteoblasts revealed that strain 8325-4 was internalized only over a short period of time (2 h) and to low numbers, while LS-1 was taken up by osteoblasts in large numbers for over 3 h. These differences in the kinetics of uptake explain the fact that the two strains ofS. aureus are internalized by osteoblasts to different extents and suggest that in addition to the fibronectin binding proteins there are other, as yet undetermined virulence factors that play a role in the internalization process.
Nature Communications | 2013
Michael S.M. Brouwer; Adam P. Roberts; Haitham Hussain; Rachel J. Williams; Elaine Allan; Peter Mullany
Clostridium difficile is a major nosocomial pathogen and the main causative agent of antibiotic-associated diarrhoea. The organism produces two potent toxins, A and B, which are its major virulence factors. These are chromosomally encoded on a region termed the pathogenicity locus (PaLoc), which also contains regulatory genes, and is absent in non-toxigenic strains. Here we show that the PaLoc can be transferred from the toxin-producing strain, 630Δerm, to three non-toxigenic strains of different ribotypes. One of the transconjugants is shown by cytotoxicity assay to produce toxin B at a similar level to the donor strain, demonstrating that a toxigenic C. difficile strain is capable of converting a non-toxigenic strain to a toxin producer by horizontal gene transfer. This has implications for the treatment of C. difficile infections, as non-toxigenic strains are being tested as treatments in clinical trials.
Infection and Immunity | 2008
Lisa Mullen; Sean P. Nair; John M. Ward; Andrew N. Rycroft; Rachel J. Williams; Giles Robertson; Nicky J. Mordan; Brian Henderson
ABSTRACT Phage display screening with fragmented genomic DNA from the animal pathogen Pasteurella multocida has identified a gene encoding a putative fibronectin binding protein (19). Homologues of this gene (PM1665) are found in all other sequenced members of the Pasteurellaceae. Gene PM1665 has been cloned, and the protein has been expressed. Recombinant PM1665 protein binds to both soluble and immobilized fibronectin and is unique in that it interacts with the integrin-binding fibronectin type III (FnIII) repeats FnIII9-10 and not, as is the case for almost all other fibronectin adhesins, to the N-terminal type I repeats. Surface plasmon resonance analysis revealed a complex binding mechanism with a KD (equilibrium dissociation constant) of 150 nM ± 70 nM. Bioinformatics analysis suggests that the PM1665 protein contains two helix-hairpin-helix (HhH) motifs, and truncation mutation studies have identified the binding site in the protein as a combination of these two HhH motifs in conjunction with a conserved amino acid motif, VNINTA. We have shown that the PM1665 protein is on the cell surface and that binding of P. multocida to fibronectin is almost completely inhibited by anti-PM1665 antiserum. These results support the hypothesis that the PM1665 protein is a member of a new family of fibronectin binding adhesins that are important in the adhesion of P. multocida to fibronectin.
Applied and Environmental Microbiology | 2012
Peter Mullany; Rachel J. Williams; Gemma C. Langridge; Daniel J. Turner; Rachael Whalan; Chris Clayton; Trevor D. Lawley; Haitham Hussain; Katherine McCurrie; Nicky Morden; Elaine Allan; Adam P. Roberts
ABSTRACT The insertion sites of the conjugative transposon Tn916 in the anaerobic pathogen Clostridium difficile were determined using Illumina Solexa high-throughput DNA sequencing of Tn916 insertion libraries in two different clinical isolates: 630ΔE, an erythromycin-sensitive derivative of 630 (ribotype 012), and the ribotype 027 isolate R20291, which was responsible for a severe outbreak of C. difficile disease. A consensus 15-bp Tn916 insertion sequence was identified which was similar in both strains, although an extended consensus sequence was observed in R20291. A search of the C. difficile 630 genome showed that the Tn916 insertion motif was present 100,987 times, with approximately 63,000 of these motifs located in genes and 35,000 in intergenic regions. To test the usefulness of Tn916 as a mutagen, a functional screen allowed the isolation of a mutant. This mutant contained Tn916 inserted into a gene involved in flagellar biosynthesis.
Infection and Immunity | 2001
John M. Ward; Julie M. Fletcher; Sean P. Nair; Michael D. Wilson; Rachel J. Williams; Stephen Poole; Brian Henderson
ABSTRACT A phoA fusion library of Actinobacillus actinomycetemcomitans genomic DNA has been screened to identify genes encoding exported and secreted proteins. A total of 8,000 colonies were screened, and 80 positive colonies were detected. From these, 48 genes were identified with (i) more than half having homology to known or hypothetical Haemophilus influenzae genes, (ii) 14 having no ascribed function, and (iii) 4 having very limited or no homology to known genes. The proteins encoded by these genes may, by virtue of their presence on the cell surface, be novel virulence determinants.
Infection and Immunity | 2004
Robert J. Salmond; Rachel J. Williams; Timothy R. Hirst; Neil A. Williams
ABSTRACT The nontoxic B subunit of Escherichia coli heat-labile enterotoxin (EtxB) is a potent immunomodulatory molecule that acts both as an adjuvant and to stimulate immune deviation processes, resulting in the suppression of Th1-associated inflammatory responses. The ability of EtxB to alter immune reactivity is dependent on its ability to modulate immune cell function through binding to cell surface molecules, the principal receptor of which is the ubiquitous GM1-ganglioside. EtxB activates B cells and antigen-presenting cells and induces the selective apoptosis of murine CD8+ T cells. We postulated that these effects are mediated by the induction of intracellular signaling pathways following EtxB-receptor interaction. We have previously shown that CD8+ T-cell apoptosis induced by EtxB results from the activation of the transcription factor NF-κB and caspases. Here we report that while caspase activity is required for apoptosis, additional features of cell death are caspase independent. EtxB induces a rapid loss of mitochondrial membrane potential and cell viability that are unaffected by caspase inhibitors. In addition, our data suggest that these processes are independent of the activity of Bax and Bcl-2 but are mediated by nitric oxide synthase.
Journal of Medical Microbiology | 2013
Rachel J. Williams; Emma Meader; Melinda J. Mayer; Arjan Narbad; Adam P. Roberts; Peter Mullany
The attP region of the Clostridium difficile phage CD27 was identified, located immediately downstream of the putative recombinase. The phage could integrate into two specific sites (attB) in the C. difficile genome, one of which was in an open reading frame encoding a putative ATPase of an ABC transporter and the other in an open reading frame encoding a putative ATPase of the flagella protein export apparatus. The prophage was capable of excision and formation of a circular molecule and phages were spontaneously released at a low frequency during growth. Infection and lysogeny of a C. difficile strain previously shown to be sensitive to CD27 were demonstrated, leading to a reduction in toxin production. Finally, a putative repressor was identified which is likely to be involved in maintaining lysogeny in these strains.
Microbes and Infection | 2007
Hesham Khalil; Rachel J. Williams; Gudrun Stenbeck; Brian Henderson; Sajeda Meghji; Sean P. Nair
Veterinary Microbiology | 2007
Lisa Mullen; Sean P. Nair; John M. Ward; Andrew N. Rycroft; Rachel J. Williams; Brian Henderson