Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Pullan is active.

Publication


Featured researches published by Rachel L. Pullan.


Parasites & Vectors | 2014

Global numbers of infection and disease burden of soil transmitted helminth infections in 2010

Rachel L. Pullan; Jennifer L. Smith; Rashmi Jasrasaria; Simon Brooker

BackgroundQuantifying the burden of parasitic diseases in relation to other diseases and injuries requires reliable estimates of prevalence for each disease and an analytic framework within which to estimate attributable morbidity and mortality. Here we use data included in the Global Atlas of Helminth Infection to derive new global estimates of numbers infected with intestinal nematodes (soil-transmitted helminths, STH: Ascaris lumbricoides, Trichuris trichiura and the hookworms) and use disability-adjusted life years (DALYs) to estimate disease burden.MethodsPrevalence data for 6,091 locations in 118 countries were sourced and used to estimate age-stratified mean prevalence for sub-national administrative units via a combination of model-based geostatistics (for sub-Saharan Africa) and empirical approaches (for all other regions). Geographical variation in infection prevalence within these units was approximated using modelled logit-normal distributions, and numbers of individuals with infection intensities above given thresholds estimated for each species using negative binomial distributions and age-specific worm/egg burden thresholds. Finally, age-stratified prevalence estimates for each level of infection intensity were incorporated into the Global Burden of Disease Study 2010 analytic framework to estimate the global burden of morbidity and mortality associated with each STH infection.ResultsGlobally, an estimated 438.9 million people (95% Credible Interval (CI), 406.3 - 480.2 million) were infected with hookworm in 2010, 819.0 million (95% CI, 771.7 – 891.6 million) with A. lumbricoides and 464.6 million (95% CI, 429.6 – 508.0 million) with T. trichiura. Of the 4.98 million years lived with disability (YLDs) attributable to STH, 65% were attributable to hookworm, 22% to A. lumbricoides and the remaining 13% to T. trichiura. The vast majority of STH infections (67%) and YLDs (68%) occurred in Asia. When considering YLDs relative to total populations at risk however, the burden distribution varied more considerably within major global regions than between them.ConclusionImprovements in the cartography of helminth infection, combined with mathematical modelling approaches, have resulted in the most comprehensive contemporary estimates for the public health burden of STH. These numbers form an important benchmark upon which to evaluate future scale-up of major control efforts.


PLOS Neglected Tropical Diseases | 2014

The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases

Peter J. Hotez; Miriam Alvarado; María-Gloria Basáñez; Ian Bolliger; Rupert Bourne; Michel Boussinesq; Simon Brooker; Ami Shah Brown; Geoffrey Buckle; Christine M. Budke; Hélène Carabin; Luc E. Coffeng; Eric M. Fèvre; Thomas Fürst; Yara A. Halasa; Rashmi Jasrasaria; Nicole Johns; Jennifer Keiser; Charles H. King; Rafael Lozano; Michele E. Murdoch; Simon O'Hanlon; Sébastien Pion; Rachel L. Pullan; K. D. Ramaiah; Thomas Roberts; Donald S. Shepard; Jennifer L. Smith; Wilma A. Stolk; Eduardo A. Undurraga

The publication of the Global Burden of Disease Study 2010 (GBD 2010) and the accompanying collection of Lancet articles in December 2012 provided the most comprehensive attempt to quantify the burden of almost 300 diseases, injuries, and risk factors, including neglected tropical diseases (NTDs) [1]–[3]. The disability-adjusted life year (DALY), the metric used in the GBD 2010, is a tool which may be used to assess and compare the relative impact of a number of diseases locally and globally [4]–[6]. Table 1 lists the major NTDs as defined by the World Health Organization (WHO) [7] and their estimated DALYs [1]. With a few exceptions, most of the NTDs currently listed by the WHO [7] or those on the expanded list from PLOS Neglected Tropical Diseases [8] are disablers rather than killers, so the DALY estimates represent one of the few metrics available that could fully embrace the chronic effects of these infections. Table 1 Estimated DALYs (in millions) of the NTDs from the Global Burden of Disease Study 2010. Disease DALYs from GBD 2010 (numbers in parentheses indicate 95% confidence intervals) [1] NTDs 26.06 (20.30–35.12) Intestinal nematode infections 5.19 (2.98–8.81) Hookworm disease 3.23 (1.70–5.73) Ascariasis 1.32 (0.71–2.35) Trichuriasis 0.64 (0.35–1.06) Leishmaniasis 3.32 (2.18–4.90) Schistosomiasis 3.31 (1.70–6.26) Lymphatic filariasis 2.78 (1.8–4.00) Food-borne trematodiases 1.88 (0.70–4.84) Rabies 1.46 ((0.85–2.66) Dengue 0.83 (0.34–1.41) African trypanosomiasis 0.56 (0.08–1.77) Chagas disease 0.55 (0.27–1.05) Cysticercosis 0.50 (0.38–0.66) Onchocerciasis 0.49 (0.36–0.66) Trachoma 0.33 (0.24–0.44) Echinococcosis 0.14 (0.07–0.29) Yellow fever <0.001 Other NTDs * 4.72 (3.53–6.35) Open in a separate window * Relapsing fevers, typhus fever, spotted fever, Q fever, other rickettsioses, other mosquito-borne viral fevers, unspecified arthropod-borne viral fever, arenaviral haemorrhagic fever, toxoplasmosis, unspecified protozoal disease, taeniasis, diphyllobothriasis and sparganosis, other cestode infections, dracunculiasis, trichinellosis, strongyloidiasis, enterobiasis, and other helminthiases. Even DALYs, however, do not tell the complete story of the harmful effects from NTDs. Some of the specific and potential shortcomings of GBD 2010 have been highlighted elsewhere [9]. Furthermore, DALYs measure only direct health loss and, for example, do not consider the economic impact of the NTDs that results from detrimental effects on school attendance and child development, agriculture (especially from zoonotic NTDs), and overall economic productivity [10], [11]. Nor do DALYs account for direct costs of treatment, surveillance, and prevention measures. Yet, economic impact has emerged as an essential feature of the NTDs, which may trap people in a cycle of poverty and disease [10]–[12]. Additional aspects not considered by the DALY metrics are the important elements of social stigma for many of the NTDs and the spillover effects to family and community members [13], [14], loss of tourism [15], and health system overload (e.g., during dengue outbreaks). Ultimately NTD control and elimination efforts could produce social and economic benefits not necessarily reflected in the DALY metrics, especially among the most affected poor communities [11].


Parasites & Vectors | 2012

The global limits and population at risk of soil-transmitted helminth infections in 2010

Rachel L. Pullan; Simon Brooker

BackgroundUnderstanding the global limits of transmission of soil-transmitted helminth (STH) species is essential for quantifying the population at-risk and the burden of disease. This paper aims to define these limits on the basis of environmental and socioeconomic factors, and additionally seeks to investigate the effects of urbanisation and economic development on STH transmission, and estimate numbers at-risk of infection with Ascaris lumbricoides, Trichuris trichiura and hookworm in 2010.MethodsA total of 4,840 geo-referenced estimates of infection prevalence were abstracted from the Global Atlas of Helminth Infection and related to a range of environmental factors to delineate the biological limits of transmission. The relationship between STH transmission and urbanisation and economic development was investigated using high resolution population surfaces and country-level socioeconomic indicators, respectively. Based on the identified limits, the global population at risk of STH transmission in 2010 was estimated.ResultsHigh and low land surface temperature and extremely arid environments were found to limit STH transmission, with differential limits identified for each species. There was evidence that the prevalence of A. lumbricoides and of T. trichiura infection was statistically greater in peri-urban areas compared to urban and rural areas, whilst the prevalence of hookworm was highest in rural areas. At national levels, no clear socioeconomic correlates of transmission were identified, with the exception that little or no infection was observed for countries with a per capita gross domestic product greater than US


Parasitology | 2008

The health impact of polyparasitism in humans : are we under-estimating the burden of parasitic diseases ?

Rachel L. Pullan; Simon Brooker

20,000. Globally in 2010, an estimated 5.3 billion people, including 1.0 billion school-aged children, lived in areas stable for transmission of at least one STH species, with 69% of these individuals living in Asia. A further 143 million (31.1 million school-aged children) lived in areas of unstable transmission for at least one STH species.ConclusionsThese limits provide the most contemporary, plausible representation of the extent of STH risk globally, and provide an essential basis for estimating the global disease burden due to STH infection.


International Journal for Parasitology | 2014

Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard

Birgit Nikolay; Simon Brooker; Rachel L. Pullan

Parasitic infections are widespread throughout the tropics and sub-tropics, and infection with multiple parasite species is the norm rather than the exception. Despite the ubiquity of polyparasitism, its public health significance has been inadequately studied. Here we review available studies investigating the nutritional and pathological consequences of multiple infections with Plasmodium and helminth infection and, in doing so, encourage a reassessment of the disease burden caused by polyparasitism. The available evidence is conspicuously sparse but is suggestive that multiple human parasite species may have an additive and/or multiplicative impact on nutrition and organ pathology. Existing studies suffer from a number of methodological limitations and adequately designed studies are clearly necessary. Current methods of estimating the potential global morbidity due to parasitic diseases underestimate the health impact of polyparasitism, and possible reasons for this are presented. As international strategies to control multiple parasite species are rolled-out, there is a number of options to investigate the complexity of polyparasitism, and it is hoped that that the parasitological research community will grasp the opportunity to understand better the health of polyparasitism in humans.


PLOS Neglected Tropical Diseases | 2013

How Effective Is School-Based Deworming for the Community-Wide Control of Soil-Transmitted Helminths?

Roy M. Anderson; James E. Truscott; Rachel L. Pullan; Simon Brooker; T. Déirdre Hollingsworth

Reliable, sensitive and practical diagnostic tests are an essential tool in disease control programmes for mapping, impact evaluation and surveillance. To provide a robust global assessment of the relative performance of available diagnostic tools for the detection of soil-transmitted helminths, we conducted a meta-analysis comparing the sensitivities and the quantitative performance of the most commonly used copro-microscopic diagnostic methods for soil-transmitted helminths, namely Kato-Katz, direct microscopy, formol-ether concentration, McMaster, FLOTAC and Mini-FLOTAC. In the absence of a perfect reference standard, we employed a Bayesian latent class analysis to estimate the true, unobserved sensitivity of compared diagnostic tests for each of the soil-transmitted helminth species Ascaris lumbricoides, Trichuris trichiura and the hookworms. To investigate the influence of varying transmission settings we subsequently stratified the analysis by intensity of infection. Overall, sensitivity estimates varied between the different methods, ranging from 42.8% for direct microscopy to 92.7% for FLOTAC. The widely used double slide Kato-Katz method had a sensitivity of 74-95% for the three soil-transmitted helminth species at high infection intensity, however sensitivity dropped to 53-80% in low intensity settings, being lowest for hookworm and A. lumbricoides. The highest sensitivity, overall and in both intensity groups, was observed for the FLOTAC method, whereas the sensitivity of the Mini-FLOTAC method was comparable with the Kato-Katz method. FLOTAC average egg count estimates were significantly lower compared with Kato-Katz, while the compared McMaster counts varied. In conclusion, we demonstrate that the Kato-Katz and Mini-FLOTAC methods had comparable sensitivities. We further show that test sensitivity of the Kato-Katz method is reduced in low transmission settings.


PLOS Neglected Tropical Diseases | 2011

Spatial Modelling of Soil-Transmitted Helminth Infections in Kenya: A Disease Control Planning Tool

Rachel L. Pullan; Peter W. Gething; Jennifer L. Smith; Charles Mwandawiro; Hugh J. W. Sturrock; Caroline W. Gitonga; Simon I. Hay; Simon Brooker

Background The London Declaration on neglected tropical diseases was based in part on a new World Health Organization roadmap to “sustain, expand and extend drug access programmes to ensure the necessary supply of drugs and other interventions to help control by 2020”. Large drug donations from the pharmaceutical industry form the backbone to this aim, especially for soil-transmitted helminths (STHs) raising the question of how best to use these resources. Deworming for STHs is often targeted at school children because they are at greatest risk of morbidity and because it is remarkably cost-effective. However, the impact of school-based deworming on transmission in the wider community remains unclear. Methods We first estimate the proportion of parasites targeted by school-based deworming using demography, school enrolment, and data from a small number of example settings where age-specific intensity of infection (either worms or eggs) has been measured for all ages. We also use transmission models to investigate the potential impact of this coverage on transmission for different mixing scenarios. Principal Findings In the example settings <30% of the population are 5 to <15 years old. Combining this demography with the infection age-intensity profile we estimate that in one setting school children output as little as 15% of hookworm eggs, whereas in another setting they harbour up to 50% of Ascaris lumbricoides worms (the highest proportion of parasites for our examples). In addition, it is estimated that from 40–70% of these children are enrolled at school. Conclusions These estimates suggest that, whilst school-based programmes have many important benefits, the proportion of infective stages targeted by school-based deworming may be limited, particularly where hookworm predominates. We discuss the consequences for transmission for a range of scenarios, including when infective stages deposited by children are more likely to contribute to transmission than those from adults.


Malaria Journal | 2010

Plasmodium infection and its risk factors in eastern Uganda.

Rachel L. Pullan; Hasifa Bukirwa; Sarah G. Staedke; Robert W. Snow; Simon Brooker

Background Implementation of control of parasitic diseases requires accurate, contemporary maps that provide intervention recommendations at policy-relevant spatial scales. To guide control of soil transmitted helminths (STHs), maps are required of the combined prevalence of infection, indicating where this prevalence exceeds an intervention threshold of 20%. Here we present a new approach for mapping the observed prevalence of STHs, using the example of Kenya in 2009. Methods and Findings Observed prevalence data for hookworm, Ascaris lumbricoides and Trichuris trichiura were assembled for 106,370 individuals from 945 cross-sectional surveys undertaken between 1974 and 2009. Ecological and climatic covariates were extracted from high-resolution satellite data and matched to survey locations. Bayesian space-time geostatistical models were developed for each species, and were used to interpolate the probability that infection prevalence exceeded the 20% threshold across the country for both 1989 and 2009. Maps for each species were integrated to estimate combined STH prevalence using the law of total probability and incorporating a correction factor to adjust for associations between species. Population census data were combined with risk models and projected to estimate the population at risk and requiring treatment in 2009. In most areas for 2009, there was high certainty that endemicity was below the 20% threshold, with areas of endemicity ≥20% located around the shores of Lake Victoria and on the coast. Comparison of the predicted distributions for 1989 and 2009 show how observed STH prevalence has gradually decreased over time. The model estimated that a total of 2.8 million school-age children live in districts which warrant mass treatment. Conclusions Bayesian space-time geostatistical models can be used to reliably estimate the combined observed prevalence of STH and suggest that a quarter of Kenyas school-aged children live in areas of high prevalence and warrant mass treatment. As control is successful in reducing infection levels, updated models can be used to refine decision making in helminth control.


PLOS Neglected Tropical Diseases | 2008

Human Helminth Co-Infection: Analysis of Spatial Patterns and Risk Factors in a Brazilian Community

Rachel L. Pullan; Jeffrey M. Bethony; Stefan M. Geiger; Bonnie Cundill; Rodrigo Correa-Oliveira; Rupert J. Quinnell; Simon Brooker

BackgroundMalaria is a leading cause of disease burden in Uganda, although surprisingly few contemporary, age-stratified data exist on malaria epidemiology in the country. This report presents results from a total population survey of malaria infection and intervention coverage in a rural area of eastern Uganda, with a specific focus on how risk factors differ between demographic groups in this population.MethodsIn 2008, a cross-sectional survey was conducted in four contiguous villages in Mulanda, sub-county in Tororo district, eastern Uganda, to investigate the epidemiology and risk factors of Plasmodium species infection. All permanent residents were invited to participate, with blood smears collected from 1,844 individuals aged between six months and 88 years (representing 78% of the population). Demographic, household and socio-economic characteristics were combined with environmental data using a Geographical Information System. Hierarchical models were used to explore patterns of malaria infection and identify individual, household and environmental risk factors.ResultsOverall, 709 individuals were infected with Plasmodium, with prevalence highest among 5-9 year olds (63.5%). Thin films from a random sample of 20% of parasite positive participants showed that 94.0% of infections were Plasmodium falciparum and 6.0% were P. malariae; no other species or mixed infections were seen. In total, 68% of households owned at least one mosquito although only 27% of school-aged children reported sleeping under a net the previous night. In multivariate analysis, infection risk was highest amongst children aged 5-9 years and remained high in older children. Risk of infection was lower for those that reported sleeping under a bed net the previous night and living more than 750 m from a rice-growing area. After accounting for clustering within compounds, there was no evidence for an association between infection prevalence and socio-economic status, and no evidence for spatial clustering.ConclusionThese findings demonstrate that mosquito net usage remains inadequate and is strongly associated with risk of malaria among school-aged children. Infection risk amongst adults is influenced by proximity to potential mosquito breeding grounds. Taken together, these findings emphasize the importance of increasing net coverage, especially among school-aged children.


Malaria Journal | 2011

School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings

Ruth A. Ashton; Takele Kefyalew; Gezahegn Tesfaye; Rachel L. Pullan; Damtew Yadeta; Richard Reithinger; Jan H. Kolaczinski; Simon Brooker

Background Individuals living in areas endemic for helminths are commonly infected with multiple species. Despite increasing emphasis given to the potential health impacts of polyparasitism, few studies have investigated the relative importance of household and environmental factors on the risk of helminth co-infection. Here, we present an investigation of exposure-related risk factors as sources of heterogeneity in the distribution of co-infection with Necator americanus and Schistosoma mansoni in a region of southeastern Brazil. Methodology Cross-sectional parasitological and socio-economic data from a community-based household survey were combined with remotely sensed environmental data using a geographical information system. Geo-statistical methods were used to explore patterns of mono- and co-infection with N. americanus and S. mansoni in the region. Bayesian hierarchical models were then developed to identify risk factors for mono- and co-infection in relation to community-based survey data to assess their roles in explaining observed heterogeneity in mono and co-infection with these two helminth species. Principal Findings The majority of individuals had N. americanus (71.1%) and/or S. mansoni (50.3%) infection; 41.0% of individuals were co-infected with both helminths. Prevalence of co-infection with these two species varied substantially across the study area, and there was strong evidence of household clustering. Hierarchical multinomial models demonstrated that relative socio-economic status, household crowding, living in the eastern watershed and high Normalized Difference Vegetation Index (NDVI) were significantly associated with N. americanus and S. mansoni co-infection. These risk factors could, however, only account for an estimated 32% of variability between households. Conclusions Our results demonstrate that variability in risk of N. americanus and S. mansoni co-infection between households cannot be entirely explained by exposure-related risk factors, emphasizing the possible role of other household factors in the heterogeneous distribution of helminth co-infection. Untangling the relative contribution of intrinsic host factors from household and environmental determinants therefore remains critical to our understanding of helminth epidemiology.

Collaboration


Dive into the Rachel L. Pullan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles Mwandawiro

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sammy M. Njenga

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Gail Davey

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar

Kebede Deribe

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar

Melanie J. Newport

Brighton and Sussex Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon I. Hay

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge