Rachel McCrary
National Center for Atmospheric Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel McCrary.
Journal of Water Resources Planning and Management | 2015
Scott Steinschneider; Rachel McCrary; Sungwook Wi; Kevin Mulligan; Linda O. Mearns; Casey Brown
AbstractThis paper presents a decision-scaling based framework to determine whether one or more preselected planning alternatives for a multiobjective water-resources system are robust to a variety of nonstationary hydroclimatic conditions and modeling uncertainties. The decision-scaling methodology is advanced beyond previous applications with an efficient procedure to select realizations of climate variability and Bayesian methods to assess the effects of hydrologic uncertainty. Monte Carlo simulations are used to identify long-term planning alternatives that are robust despite the hydroclimatic uncertainties. A new metric is proposed to define robustness in this context. The framework is coupled with a host of long-term projections to understand the likelihood of potential future changes and provide useful guidance for planning. The effects of climate model downscaling and credibility on the decision process are discussed. The approach is demonstrated in a case study for a dual-purpose surface water re...
Geophysical Research Letters | 2015
Scott Steinschneider; Rachel McCrary; Linda O. Mearns; Casey Brown
Approaches for probability density function (pdf) development of future climate often assume that different climate models provide independent information, despite model similarities that stem from a common genealogy (models with shared code or developed at the same institution). Here we use an ensemble of projections from the Coupled Model Intercomparison Project Phase 5 to develop probabilistic climate information, with and without an accounting of intermodel correlations, for seven regions across the United States. We then use the pdfs to estimate midcentury climate-related risks to a water utility in one of the regions. We show that the variance of climate changes is underestimated across all regions if model correlations are ignored, and in some cases, the mean change shifts as well. When coupled with impact models of the hydrology and infrastructure of a water utility, the underestimated likelihood of large climate changes significantly alters the quantification of risk for water shortages by midcentury.
Journal of Climate | 2014
Rachel McCrary; David A. Randall; Cristiana Stan
AbstractThe relationship between African easterly waves and convection is examined in two coupled general circulation models: the Community Climate System Model (CCSM) and the “superparameterized” CCSM (SP-CCSM). In the CCSM, the easterly waves are much weaker than observed. In the SP-CCSM, a two-dimensional cloud-resolving model replaces the conventional cloud parameterizations of CCSM. Results show that this allows for the simulation of easterly waves with realistic horizontal and vertical structures, although the model exaggerates the intensity of easterly wave activity over West Africa. The simulated waves of SP-CCSM are generated in East Africa and propagate westward at similar (although slightly slower) phase speeds to observations. The vertical structure of the waves resembles the first baroclinic mode. The coupling of the waves with convection is realistic. Evidence is provided herein that the diabatic heating associated with deep convection provides energy to the waves simulated in SP-CCSM. In co...
Journal of Climate | 2014
Rachel McCrary; David A. Randall; Cristiana Stan
AbstractThe West African monsoon seasonal cycle is simulated with two coupled general circulation models: the Community Climate System Model (CCSM), which uses traditional convective parameterizations, and the “superparameterized” CCSM (SP-CCSM), in which the atmospheric parameterizations have been replaced with an embedded cloud-resolving model. Compared to CCSM, SP-CCSM better represents the magnitude and spatial patterns of summer monsoon precipitation over West Africa. Most importantly, the region of maximum precipitation is shifted from the Gulf of Guinea in CCSM (not realistic) to over the continent in SP-CCSM. SP-CCSM also develops its own biases—namely, excessive rainfall along the Guinean coast in summer. Biases in rainfall from both models are linked to a misrepresentation of the equatorial Atlantic cold tongue. Warm sea surface temperature (SST) biases are linked to westerly trade wind biases and convection within the intertropical convergence zone. Improved SST biases in SP-CCSM are linked to ...
Meteorological Monographs | 2016
David A. Randall; Charlotte A. DeMott; Cristiana Stan; Marat Khairoutdinov; James J. Benedict; Rachel McCrary; Katherine Thayer-Calder; Mark Branson
AbstractCloud processes play a central role in the dynamics of the tropical atmosphere, but for many years the shortcomings of cloud parameterizations have limited our ability to simulate and understand important tropical weather systems such as the Madden–Julian oscillation. Since about 2001, “superparameterization” has emerged as a new path forward, complementing but not replacing studies based on conventional parameterizations. This chapter provides an overview of work with superparameterization, including a discussion of the method itself and a summary of key results.
Journal of Hydrometeorology | 2017
Rachel McCrary; Seth McGinnis; Linda O. Mearns
AbstractThis study evaluates snow water equivalent (SWE) over North America in the reanalysis-driven NARCCAP regional climate model (RCM) experiments. Examination of SWE in these runs allows for the identification of bias due to RCM configuration, separate from inherited GCM bias. SWE from the models is compared to SWE from a new ensemble observational product to evaluate the RCMs’ ability to capture the magnitude, spatial distribution, duration, and timing of the snow season. This new dataset includes data from 14 different sources in five different types. Consideration of the associated uncertainty in observed SWE strongly influences the appearance of bias in RCM-generated SWE. Of the six NARCCAP RCMs, the version of MM5 run by Iowa State University (MM5I) is found to best represent SWE despite its use of the Noah land surface model. CRCM overestimates SWE because of cold temperature biases and surface temperature parameterization options, while RegCM3 (RCM3) does so because of excessive precipitation. ...
Journal of Climate | 2017
Melissa S. Bukovsky; Rachel McCrary; Anji Seth; Linda O. Mearns
AbstractGlobal and regional climate model ensembles project that the annual cycle of rainfall over the southern Great Plains (SGP) will amplify by midcentury. Models indicate that warm-season precipitation will increase during the early spring wet season but shift north earlier in the season, intensifying late summer drying. Regional climate models (RCMs) project larger precipitation changes than their global climate model (GCM) counterparts. This is particularly true during the dry season. The credibility of the RCM projections is established by exploring the larger-scale dynamical and local land–atmosphere feedback processes that drive future changes in the simulations, that is, the responsible mechanisms or processes. In this case, it is found that out of 12 RCM simulations produced for the North American Regional Climate Change Assessment Program (NARCCAP), the majority are mechanistically credible and consistent in the mean changes they are producing in the SGP. Both larger-scale dynamical processes ...
Geophysical Research Letters | 2015
Scott Steinschneider; Rachel McCrary; Linda O. Mearns; Casey Brown
Archive | 2016
Casey Brown; Scott Steinschneider; Sungwook Wi; John Weatherly; Michael Case; Timothy Hayden; Anne Koster; Linda O. Mearns; Melissa Bukovsky; Rachel McCrary
Archive | 2016
Casey Brown; John Weatherly; Linda O. Mearns; Scott Steinschneider; Sungwook Wi; Michael Case; Timothy Hayden; Anne Koster; Melissa S. Bukovsky; Rachel McCrary