Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel U. Shelley is active.

Publication


Featured researches published by Rachel U. Shelley.


Global Biogeochemical Cycles | 2012

Controls on dissolved cobalt in surface waters of the Sargasso Sea: Comparisons with iron and aluminum

Rachel U. Shelley; Peter N. Sedwick; Thomas S. Bibby; Patricia Cabedo-Sanz; Thomas M. Church; Rodney J. Johnson; Anna I. Macey; Chris M. Marsay; Edward R. Sholkovitz; Simon J. Ussher; Paul J. Worsfold; Maeve C. Lohan

Dissolved cobalt (dCo), iron (dFe) and aluminum (dAl) were determined in water column samples along a meridional transect (?31°N to 24°N) south of Bermuda in June 2008. A general north-to-south increase in surface concentrations of dFe (0.3–1.6 nM) and dAl (14–42 nM) was observed, suggesting that aerosol deposition is a significant source of dFe and dAl, whereas no clear trend was observed for near-surface dCo concentrations. Shipboard aerosol samples indicate fractional solubility values of 8–100% for aerosol Co, which are significantly higher than corresponding estimates of the solubility of aerosol Fe (0.44–45%). Hydrographic observations and analysis of time series rain samples from Bermuda indicate that wet deposition accounts for most (>80%) of the total aeolian flux of Co, and hence a significant proportion of the atmospheric input of dCo to our study region. Our aerosol data imply that the atmospheric input of dCo to the Sargasso Sea is modest, although this flux may be more significant in late summer. The water column dCo profiles reveal a vertical distribution that predominantly reflects ‘nutrient-type’ behavior, versus scavenged-type behavior for dAl, and a hybrid of nutrient- and scavenged-type behavior for dFe. Mesoscale eddies also appear to impact on the vertical distribution of dCo. The effects of biological removal of dCo from the upper water column were apparent as pronounced sub-surface minima (21 ± 4 pM dCo), coincident with maxima in Prochlorococcus abundance. These observations imply that Prochlorococcus plays a major role in removing dCo from the euphotic zone, and that the availability of dCo may regulate Prochlorococcus growth in the Sargasso Sea.


Journal of Geophysical Research | 2015

A novel tracer technique to quantify the atmospheric flux of trace elements to remote ocean regions

David Kadko; William M. Landing; Rachel U. Shelley

Atmospheric input into the global ocean constitutes an important budgetary component of numerous chemical species and plays a key role in controlling biogeochemical processes in the ocean. Assessment of this input is difficult, however, because measurements of deposition rates to the ocean, particularly in remote areas, are rare and susceptible to problems of temporal and spatial variability. While the collection and analysis of aerosol samples is somewhat routine, the chemical concentration data collected from ship board or land-based aerosol samplers in and of themselves cannot yield the deposition flux of trace elements; a method is required to transform concentration measurements into flux. The ability to derive the atmospheric flux of 7Be from its ocean inventory provides a key linkage between the atmospheric concentration of chemical species and their deposition to the ocean. We have demonstrated that estimates of the atmospheric flux of trace elements (TEs) can be made by multiplying the ocean inventory of 7Be x [TE/7Be] ratio in bulk aerosols. Flux estimates for trace elements made by the 7Be ocean inventory method were comparable to fluxes derived from rain samples collected on the island of Bermuda. The situation at Bermuda allows such testing to be made, where ocean-based methods can be calibrated by convenient land locations. Our results suggest that this method would be useful for remote areas where fixed sampling stations do not exist; that is, the majority of the global ocean.


Environmental Science & Technology | 2016

Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust

Amelia F. Longo; Yan Feng; Barry Lai; William M. Landing; Rachel U. Shelley; Athanasios Nenes; N. Mihalopoulos; Kalliopi Violaki; Ellery D. Ingall

Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.


Biogeosciences Discussions | 2018

Dissolved iron in the North Atlantic Ocean and Labrador Sea along the GEOVIDE section (GEOTRACES section GA01)

Manon Tonnard; Hélène Planquette; Andrew R. Bowie; Pier van der Merwe; Morgane Gallinari; Floriane Desprez De Gesincourt; Yoan Germain; Arthur Gourain; Marion Benetti; Gilles Reverdin; Paul Tréguer; Julia Boutorh; Marie Cheize; Jan-Lukas Menzel Barraqueta; Leonardo Pereira-Contreira; Rachel U. Shelley; Pascale Lherminier; Géraldine Sarthou

Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analyzed using a seaFAST-picoTM coupled to an Element XR sector field inductively coupled plasma mass spectrometer (SF-ICP-MS) and provided interesting insights into the Fe sources in this area. Overall, DFe concentrations ranged from 0.09± 0.01 to 7.8± 0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland, and Newfoundland margins likely due to riverine inputs from the Tagus River, meteoric water inputs, and sedimentary inputs. Deep winter convection occurring the previous winter provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth and lead to relatively elevated DFe concentrations within subsurface waters of the Irminger Sea. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles in the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers located in the different basins and at the Iberian Margin were found to act as either a source or a sink of DFe depending on the nature of particles, Published by Copernicus Publications on behalf of the European Geosciences Union. 918 M. Tonnard et al.: Dissolved iron in the North Atlantic Ocean with organic particles likely releasing DFe and Mn particle scavenging DFe.


Biogeosciences Discussions | 2018

Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal

Jan-Lukas Menzel Barraqueta; Christian Schlosser; Hélène Planquette; Arthur Gourain; Marie Cheize; Julia Boutorh; Rachel U. Shelley; Leonardo Pereira Contreira; Martha Gledhill; Mark J. Hopwood; Pascale Lherminier; Géraldine Sarthou; Eric P. Achterberg

The distribution of dissolved aluminium (dAl) in the water column of the North Atlantic and Labrador Sea was studied along GEOTRACES section GA01 to unravel the sources and sinks of this element. Surface water dAl concentrations were low (median of 2.5 nM) due to low aerosol deposition and removal by biogenic particles (i.e. phytoplankton cells). However, surface water dAl concentrations were enhanced on the Iberian and Greenland shelves (up to 30.9 nM) due to continental inputs (rivers, glacial flour, and ice melt). Dissolved Al in surface waters scaled negatively with chlorophyll a and biogenic silica (opal) concentrations. The abundance of diatoms exerted a significant (p < 0.01) control on the surface particulate Al (pAl) to dAl ratios by decreasing dAl levels and increasing pAl levels. Dissolved Al concentrations generally increased with depth and correlated strongly with silicic acid (R2 > 0.76) west of the Iberian Basin, suggesting net release of dAl at depth during remineralization of sinking opal-containing particles. Enrichment of dAl at near-bottom depths was observed due to the resuspension of sediments. The highest dAl concentrations (up to 38.7 nM) were observed in Mediterranean Outflow Waters, which act as a major source of dAl to mid-depth waters of the eastern North Atlantic. This study clearly shows that the vertical and lateral distributions of dAl in the North Atlantic differ when compared to other regions of the Atlantic and global oceans. Responsible for these large interand intrabasin differences are the large spatial variabilities in the main Al source, atmospheric deposition, and the main Al sink, particle scavenging by biogenic particles.


Biogeosciences Discussions | 2018

Introduction to the French GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise

Géraldine Sarthou; Pascale Lherminier; Eric P. Achterberg; Fernando Alonso-Pérez; Eva Bucciarelli; Julia Boutorh; Vincent Bouvier; Edward A. Boyle; Pierre Branellec; Lidia I. Carracedo; Núria Casacuberta; Maxi Castrillejo; Marie Cheize; Leonardo Contreira Pereira; Daniel Cossa; Nathalie Daniault; Emmanuel De Saint-Léger; Frank Dehairs; Feifei Deng; Floriane Desprez de Gésincourt; Jérémy Devesa; Lorna Foliot; Debany Fonseca-Batista; Morgane Gallinari; Maribel I. García-Ibáñez; Arthur Gourain; Emilie Grossteffan; M. Hamon; Lars-Eric Heimbürger; Gideon M. Henderson

The GEOVIDE cruise, a collaborative project within the framework of the international GEOTRACES programme, was conducted along the French-led section in the North Atlantic Ocean (Section GA01), between 15 May and 30 June 2014. In this special issue (https://www.biogeosciences.net/special_issue900.html), results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 18 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue. 1 Scientific context and objectives Understanding the distribution, sources, and sinks of trace elements and isotopes (TEIs) will improve our ability to understand past and present marine environments. Some TEIs are toxic (e.g. Hg), while others are essential micronutrients involved in many metabolic processes of marine organisms (e.g. Fe, Mn). The availability of TEIs therefore constrains the ocean carbon cycle and affects a range of other biogeochemical processes in the Earth system, whilst responding to and influencing global change (de Baar et al., 2005; Blain et al., 2007; Boyd et al., 2007; Pollard et al., 2007). Moreover, TEI interactions with the marine food web strongly depend on their physical (particulate/dissolved/colloidal/soluble) and chemical (organic and redox) forms. In addition, some TEIs are diagnostic in allowing the quantification of specific mechanisms in the marine environment that are challenging to measure directly. A few examples include (i) atmospheric deposition (e.g. 210Pb, Al, Mn, Th isotopes, 7Be; Baker et al., 2016; Hsieh et al., 2011; Measures and Brown, 1996); (ii) mixing rates of deep waters or shelf-to-open ocean (e.g. 231Pa/230Th,114C, Ra isotopes, 129I, 236U; van Beek et al., 2008; Casacuberta et al., 2016; Key et al., 2004); (iii) boundary exchange processes (e.g. εNd, Jeandel et al., 2011; Lacan and Jeandel, 2001, 2005); and (iv) downward flux of organic carbon and/or remineralization in deep waters (e.g. 234Th/238U, 210Pb/210Po, Baxs; Buesseler et al., 2004; Dehairs et al., 1997; Roca-Martí et al., 2016). In such settings, TEIs provide chemical constraints and allow the estimation of fluxes which was not possible before the development of their analyses. Finally, paleoceanographers are wholly dependent on the development of tracers, many of which are based on TEIs used as proxies, in order to reconstruct past environmental conditions (e.g. ocean productivity, patterns and rates of ocean circulation, ecosystem structures, ocean anoxia; Henderson, 2002). Such reconstruction efforts are essential to assess the processes involved in regulating the global climate system, and possible future climate change variability. Despite all these major implications, the distribution, sources, sinks, and internal cycling of TEIs in the oceans are still largely unknown due to the lack of appropriate clean sampling approaches and insufficient sensitivity and selectivity of the analytical measurement techniques until recently. This last point has improved very quickly as significant improvements in the instrumental techniques now allow the measurements of concentrations, speciation (physical and chemical forms), and isotopic compositions for most of the elements of the periodic table which have been identified either as relevant tracers or key nutrients in the marine environment. These recent advances provide the marine geochemistry community with a significant opportunity to make subBiogeosciences, 15, 7097–7109, 2018 www.biogeosciences.net/15/7097/2018/ G. Sarthou et al.: French GEOTRACES North Atlantic Transect (GA01) 7099 Figure 1. Schematic diagram of the mean large-scale circulation adapted from Daniault et al. (2016) and Zunino et al. (2017). Bathymetry is plotted in color with color changes at 100 and 1000 m and every 1000 m below 1000 m. Black dots represent the Short station, yellow stars the Large ones, orange stars the XLarge ones, and red stars the Super ones. The main water masses are indicated: Denmark Strait Overflow Water (DSOW), Iceland–Scotland Overflow Water (ISOW), Labrador Sea Water (LSW), Mediterranean Water (MW), and lower North East Atlantic Deep Water (LNEADW). stantial contributions to a better understanding of the marine environment. In this general context, the aim of the international GEOTRACES programme is to characterize TEI distributions on a global scale, consisting of ocean sections, and regional process studies, using a multi-proxy approach. The GEOVIDE section is the French contribution to this global survey in the North Atlantic Ocean along the OVIDE section and in the Labrador Sea (Fig. 1) and complements a range of other international cruises in the North Atlantic. GEOVIDE leans on the knowledge gained by the OVIDE project during which the Portugal–Greenland section has been carried out biennially since 2002, gathering physical and biogeochemical data from the surface to the bottom (Mercier et al., 2015; Pérez et al., 2018). Rationale for the GEOVIDE section i. The North Atlantic Ocean plays a key role in mediating the climate of the Earth. It represents a key region of the Meridional Overturning Circulation (MOC) and a major sink of anthropogenic carbon (Cant) (Pérez et al., 2013; Sabine et al., 2004; Seager et al., 2002). Since 2002, the OVIDE project has contributed to the observation of both the circulation and water mass properties of the North Atlantic Ocean. Despite the importance of the MOC on global climate, it is still challenging to assess its strength within a reasonable uncertainty (Kanzow et al., 2010; Lherminier et al., 2010). The MOC strength estimated from in situ measurements on OVIDE cruises has thus helped to validate a time series for the amplitude of the MOC (based on altimetry and ARGO float array data) that exhibits a drop of 2.5± 1.4 Sv (95 % confidence interval) between 1993 and 2010 (Mercier et al., 2015), consistent with other modelling studies (Xu et al., 2013). This time series, along with the in situ data, shows a recovery of the MOC amplitude in 2014 at a value similar to those of the mid1990s, confirming the importance of the decadal variability in the subpolar gyre. During OVIDE, the contributions of the most relevant currents, water masses, and biogeochemical provinces were localized and quantified. This knowledge was crucial for the establishment of the best strategy to sample TEIs in this specific region. In addition to the OVIDE section, the Labrador Sea section offered a unique opportunity to complement the MOC estimate, to analyse the propagation of anomalies in temperature and salinity (Reverdin et al., 1994), and to study the distribution of TEIs along the boundary current of the subpolar gyre, coupling both observations and modelling. Moreover, recent results provided evidence that CO2 uptake in the North Atlantic was reduced by the weakening of the MOC (Pérez et al., 2013). The most significant finding of this study was that the uptake of Cant occurred almost exclusively in the subtropical gyre, while natural CO2 uptake dominated in the subpolar gyre. In light of these new results, one issue to be addressed was the coupling between the Cant and the transport of water, with the aim to understand how the changes in the ventilation and in the circulation of water masses affect the Cant uptake and its storage capacity in the various identified provinces (Fröb et al., 2018). Finally, as the subpolar North Atlantic forms the starting point for the global ocean conveyor belt, it is of particular interest to investigate how TEIs are transferred to the deep ocean through both ventilation and particle sinking, and how deep convection processes impact the TEI distributions in this key region. ii. A better assessment of the factors that control organic production and export of carbon in the productive North Atlantic Ocean together with a better understanding of the role played by TEIs in these processes is research priorities. Pronounced phytoplankton blooms occur in the North Atlantic in spring in response to upwelling and water column destratification (Bury et al., 2001; Henson et al., 2009; Savidge et al., 1995). Such www.biogeosciences.net/15/7097/2018/ Biogeosciences, 15, 7097–7109, 2018 7100 G. Sarthou et al.: French GEOTRACES North Atlantic Transect (GA01) blooms are known to trigger substantial export of fastsinking particles (Lampitt, 1985), and can represent a major removal mechanism for particulate organic carbon, macronutrients, and TEIs to the deep ocean. iii. In the North Atlantic, TEI distributions are influenced by a variety of sources including, most importantly, the atmosphere and the margins (Iberian, Greenland, and Labrador margins). 1. Atmosphere. Atmospheric inputs (e.g. mineral dust, anthropogenic emission aerosols) are an important source of TEIs to the North Atlantic Ocean due to the combined effects of anthropogenic emissions from industrial/agricultural sources and mineral dust mobilized from the arid regions of North Africa (Duce et al., 2008; Jickells et al., 2005). Model and satellite data for the GEOVIDE section suggested that an approximately 10fold decrease in the atmospheric concentrations of mineral dust was expected from south to north (Mahowald et al., 2005). As there had been relatively few aerosol TEI studies in the northern North Atlantic compared to the tropical and subtropical North Atlantic prior to GEOVIDE, constraining atmospheric deposition fluxes to this region had been identified as a research priority (de Leeuw et al., 2014). During the GEOVIDE campaign, a multi-proxy approach (e.g. aerosol trace element concentrations, dissolved and particulate Al and Mn, seawater 210Pb, Fe, Nd, and Th isotopes, 7Be) was taken to achieve the objective of better constraining the atmospheric deposition fluxes of key trace elements. 2. Margins. The continental shelves can act


Biogeosciences Discussions | 2018

Atmospheric aerosoldeposition fluxes over the Atlantic Ocean: A GEOTRACES case study

Jan-Lukas Menzel Barraqueta; Jessica K. Klar; Martha Gledhill; Christian Schlosser; Rachel U. Shelley; Hélène Planquette; Bernhard Wenzel; Géraldine Sarthou; Eric P. Achterberg

15 Atmospheric deposition is an important source of micronutrients to the ocean, but atmospheric deposition fluxes remain poorly constrained in most ocean regions due to the limited number of field observations of wet and dry atmospheric inputs. Here we present the distribution of dissolved aluminium (dAl), as a tracer of atmospheric inputs, in surface waters of the Atlantic Ocean along GEOTRACES sections GA01, GA06, GA08, and GA10. We used the surface mixed layer concentrations of dAl to calculate atmospheric deposition fluxes using a simple steady state model. We have optimized the 20 Al fractional aerosol solubility, dAl residence time within the surface mixed layer and depth of the surface mixed layer for each separate cruise to calculate the atmospheric deposition fluxes. We calculated the lowest deposition fluxes of 0.15 ± 0.1 and 0.27 ± 0.13 g m -2 yr -1 for the South and North Atlantic Ocean (> 40°S and > 40°N), respectively, and highest fluxes of 2.67 ± 1.96 and 3.82 ± 2.72 g m -2 yr -1 for the South East Atlantic and tropical Atlantic Ocean, respectively. Overall, our estimations are comparable to atmospheric dust deposition model estimates and reported field-based atmospheric deposition 25 estimates. We note that our estimates diverge from atmospheric dust deposition model flux estimates in regions influenced by riverine Al inputs and in upwelling regions. As dAl is a key trace element in the GEOTRACES Programme, the approach presented in this study allows calculations of atmospheric deposition fluxes at high spatial resolution for remote ocean regions. . 30 Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-209 Manuscript under review for journal Biogeosciences Discussion started: 7 May 2018 c


Journal of Geophysical Research | 2017

Dissolved scandium, yttrium, and lanthanum in the surface waters of the North Atlantic: Potential use as an indicator of scavenging intensity

Claire P. Till; Rachel U. Shelley; William M. Landing; Kenneth W. Bruland

Recent work has begun to elucidate the biogeochemical cycling of scandium (Sc) in the open ocean, but so far no surface distribution data has been reported of dissolved Sc, and no basin-scale surface distributions have been reported of yttrium (Y) or lanthanum (La). This work presents basin-wide surface Sc, Y and La data in a section across the North Atlantic subtropical gyre (2011 GEOTRACES GA03) and investigates the potential utility of these distributions. This work uses dissolved and aerosol concentration data for La and Sc to estimate their surface ocean residence times in both the center of the oligotrophic gyre and near the African coastline. This work additionally shows that the surface distribution of Sc in the North Atlantic correlates with the shape of the gyre as inferred by isotherm depth, with lower Sc concentrations at the gyre boundaries. This pattern suggests that Sc could be drawn down by the elevated particle flux at the gyre boundaries. In this case, Sc removal could be used as an indicator of scavenging intensity. In order to account for variable input of Sc to the surface ocean, we propose normalizing the Sc distribution to that of Y or La, which are much less particle reactive and are input via dust to the surface North Atlantic in constant ratios with Sc. Such normalization improves the correlation with isotherm depth. We propose that the variations in dissolved Y/Sc and La/Sc ratios may be due to preferential Sc scavenging, and could therefore indicate scavenging intensity.


Deep-sea Research Part Ii-topical Studies in Oceanography | 2015

Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

Rachel U. Shelley; Peter L. Morton; William M. Landing


Marine Chemistry | 2013

Relationships among aerosol water soluble organic matter, iron and aluminum in European, North African, and Marine air masses from the 2010 US GEOTRACES cruise

Andrew S. Wozniak; Rachel U. Shelley; Rachel L. Sleighter; Hussain A.N. Abdulla; Peter L. Morton; William M. Landing; Patrick G. Hatcher

Collaboration


Dive into the Rachel U. Shelley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward A. Boyle

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Maeve C. Lohan

National Oceanography Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge