Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachela Popovtzer is active.

Publication


Featured researches published by Rachela Popovtzer.


International Journal of Nanomedicine | 2011

Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study.

Tobi Reuveni; Menachem Motiei; Zimam Romman; Aron Popovtzer; Rachela Popovtzer

In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm) were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Nanoparticles as computed tomography contrast agents: current status and future perspectives

Malka Shilo; Tobi Reuveni; Menachem Motiei; Rachela Popovtzer

The importance of computed tomography (CT) as one of the leading radiology technologies applied in the field of biomedical imaging escalated the development of nanoparticles as the next generation CT contrast agents. Nanoparticles are expected to play a major role in the future of medical diagnostics due to their many advantages over the conventional contrast agents, such as prolonged blood circulation time, controlled biological clearance pathways and specific molecular targeting capabilities. This paper will describe the basic design principles of nanoparticle-based CT contrast agents and review the state-of-the-art developments and clinical applications of blood pool, passive and active targeting CT contrast agents.


ACS Nano | 2015

Nanomedicine for Cancer Immunotherapy: Tracking Cancer-Specific T-Cells in Vivo with Gold Nanoparticles and CT Imaging

Rinat Meir; Katerina Shamalov; Oshra Betzer; Menachem Motiei; Miryam Horovitz-Fried; Ronen Yehuda; Aron Popovtzer; Rachela Popovtzer; Cyrille J. Cohen

Application of immune cell-based therapy in routine clinical practice is challenging due to the poorly understood mechanisms underlying success or failure of treatment. Development of accurate and quantitative imaging techniques for noninvasive cell tracking can provide essential knowledge for elucidating these mechanisms. We designed a novel method for longitudinal and quantitative in vivo cell tracking, based on the superior visualization abilities of classical X-ray computed tomography (CT), combined with state-of-the-art nanotechnology. Herein, T-cells were transduced to express a melanoma-specific T-cell receptor and then labeled with gold nanoparticles (GNPs) as a CT contrast agent. The GNP-labeled T-cells were injected intravenously to mice bearing human melanoma xenografts, and whole-body CT imaging allowed examination of the distribution, migration, and kinetics of T-cells. Using CT, we found that transduced T-cells accumulated at the tumor site, as opposed to nontransduced cells. Labeling with gold nanoparticles did not affect T-cell function, as demonstrated both in vitro, by cytokine release and proliferation assays, and in vivo, as tumor regression was observed. Moreover, to validate the accuracy and reliability of the proposed cell tracking technique, T-cells were labeled both with green fluorescent protein for fluorescence imaging, and with GNPs for CT imaging. A remarkable correlation in signal intensity at the tumor site was observed between the two imaging modalities, at all time points examined, providing evidence for the accuracy of our CT cell tracking abilities. This new method for cell tracking with CT offers a valuable tool for research, and more importantly for clinical applications, to study the fate of immune cells in cancer immunotherapy.


Contrast Media & Molecular Imaging | 2014

Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy.

Taeyjuana Curry; Raoul Kopelman; Malka Shilo; Rachela Popovtzer

Gold nanoparticles have emerged as some of the most extensively utilized nanoplatforms for the diagnosis, imaging, monitoring and treatment of malignant diseases. In particular, in computed tomography (CT) imaging and in therapy (PTT), the exploitation of the various, advantageous properties of gold nanoparticles have resulted in numerous advances in each of these fields. The purpose of this review is to assess the status of gold-nanoparticle mediated CT and PTT, highlight several promising outcomes and motivate the combination of these two functionalities in the same nanoparticle platform. The given examples of research based advances and the encouraging results of in vitro and in vivo studies provide much excitement and promise for future theranostic (therapy + diagnostic) clinical applications, as well as for image-guided therapy and/or surgery, and their monitoring.


ACS Nano | 2014

Nanoparticle-based CT imaging technique for longitudinal and quantitative stem cell tracking within the brain: application in neuropsychiatric disorders.

Oshra Betzer; Amit Shwartz; Menachem Motiei; Gila Kazimirsky; Iris Gispan; Efrat Damti; Chaya Brodie; Gal Yadid; Rachela Popovtzer

A critical problem in the development and implementation of stem cell-based therapy is the lack of reliable, noninvasive means to image and trace the cells post-transplantation and evaluate their biodistribution, final fate, and functionality. In this study, we developed a gold nanoparticle-based CT imaging technique for longitudinal mesenchymal stem cell (MSC) tracking within the brain. We applied this technique for noninvasive monitoring of MSCs transplanted in a rat model for depression. Our research reveals that cell therapy is a potential approach for treating neuropsychiatric disorders. Our results, which demonstrate that cell migration could be detected as early as 24 h and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression-related brain regions. We further developed a noninvasive quantitative CT ruler, which can be used to determine the number of cells residing in a specific brain region, without tissue destruction or animal scarification. This technique may have a transformative effect on cellular therapy, both for basic research and clinical applications.


International Journal of Nanomedicine | 2012

A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods

Rinat Ankri; Vital Peretz; Menachem Motiei; Rachela Popovtzer; Dror Fixler

This paper presents a new method for cancer detection based on diffusion reflection measurements. This method enables discrimination between cancerous and noncancerous tissues due to the intense light absorption of gold nanorods (GNRs), which are selectively targeted to squamous cell carcinoma head and neck cancer cells. Presented in this paper are tissue-like phantom and in vivo results that demonstrate the high sensitivity of diffusion reflection measurements to the absorption differences between the GNR-targeted cancerous tissue and normal, noncancerous tissue. This noninvasive and nonionizing optical detection method provides a highly sensitive, simple, and inexpensive tool for cancer detection.


Nano Letters | 2014

Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements.

Rinat Ankri; Dorit Leshem-Lev; Dror Fixler; Rachela Popovtzer; Menachem Motiei; Ran Kornowski; Edith Hochhauser; Eli I. Lev

In this study we report the use of gold nanorods (GNRs) as absorption contrast agents in the diffusion reflection (DR) method for the in vivo detection of atherosclerotic injury. The early detection and characterization of atherosclerotic vascular disease is considered to be one of the greatest medical challenges today. We show that macrophage cells, which are major components of unstable active atherosclerotic plaques, uptake gold nanoparticles, resulting in a change in the optical properties of tissue-like phantoms and a unique DR profile. In vivo DR measurements of rats that underwent injury of the carotid artery showed a clear difference between the DR profiles of the injured compared with healthy arteries. The results suggest that DR measurements following GNRs administration represent a potential novel method for the early detection of atherosclerotic vascular disease.


Journal of Biophotonics | 2013

Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection.

Rinat Ankri; Amihai Meiri; Shemuel I. Lau; Menachem Motiei; Rachela Popovtzer; Dror Fixler

Spatial diffusion reflection (DR) measurements of gold nanorods (GNR) were recently suggested as a simple and highly sensitive non-invasive and non-ionizing method for real-time cancer detection. In this paper we demonstrate that wavelength dependent DR measurements enable the spectral red-shift observation of highly concentrated GNR. By conjugating targeting moieties to the GNR, large density of GNR can specifically home onto cancer cells. The inter-particle plasmon resonance pattern of the highly concentrated GNR leads to an extension and a red-shift (Δλ) in the absorption spectrum of the concentrated GNR. Dark-field microscopy was used in order to measure the expected Δλ in different GNR concentrations in vitro. Double-wavelength DR measurements of tissue-like phantoms and tumor bearing mice containing different GNR concentrations are presented. We show that the DR profile of the highly concentrated GNR directly correlate with the spectral extension and red-shift. This presented work suggests that wavelength dependent DR method can serve as a promising tool for real-time superficial tumor detection.


International Journal of Nanomedicine | 2012

Towards real-time detection of tumor margins using photothermal imaging of immune-targeted gold nanoparticles

Kobi Jakobsohn; Menachem Motiei; Moshe Sinvani; Rachela Popovtzer

Background One of the critical problems in cancer management is local recurrence of disease. Between 20% and 30% of patients who undergo tumor resection surgery require reoperation due to incomplete excision. Currently, there are no validated methods for intraoperative tumor margin detection. In the present work, we demonstrate the potential use of gold nanoparticles (GNPs) as a novel contrast agent for photothermal molecular imaging of cancer. Methods Phantoms containing different concentrations of GNPs were irradiated with continuous-wave laser and measured with a thermal imaging camera which detected the temperature field of the irradiated phantoms. Results The results clearly demonstrate the ability to distinguish between cancerous cells specifically targeted with GNPs and normal cells. This technique, which allows highly sensitive discrimination between adjacent low GNP concentrations, will allow tumor margin detection while the temperature increases by only a few degrees Celsius (for GNPs in relevant biological concentrations). Conclusion We expect this real-time intraoperative imaging technique to assist surgeons in determining clear tumor margins and to maximize the extent of tumor resection while sparing normal background tissue.


Scientific Reports | 2015

In-vitro Optimization of Nanoparticle-Cell Labeling Protocols for In-vivo Cell Tracking Applications.

Oshra Betzer; Rinat Meir; Tamar Dreifuss; Katerina Shamalov; Menachem Motiei; Amit Shwartz; Koby Baranes; Cyrille J. Cohen; Niva Shraga-Heled; Racheli Ofir; Gal Yadid; Rachela Popovtzer

Recent advances in theranostic nanomedicine can promote stem cell and immune cell-based therapy. Gold nanoparticles (GNPs) have been shown to be promising agents for in-vivo cell-tracking in cell-based therapy applications. Yet a crucial challenge is to develop a reliable protocol for cell upload with, on the one hand, sufficient nanoparticles to achieve maximum visibility of cells, while on the other hand, assuring minimal effect of particles on cell function and viability. Previous studies have demonstrated that the physicochemical parameters of GNPs have a critical impact on their efficient uptake by cells. In the current study we have examined possible variations in GNP uptake, resulting from different incubation period and concentrations in different cell-lines. We have found that GNPs effectively labeled three different cell-lines - stem, immune and cancer cells, with minimal impairment to cell viability and functionality. We further found that uptake efficiency of GNPs into cells stabilized after a short period of time, while GNP concentration had a significant impact on cellular uptake, revealing cell-dependent differences. Our results suggest that while heeding the slight variations within cell lines, modifying the loading time and concentration of GNPs, can promote cell visibility in various nanoparticle-dependent in-vivo cell tracking and imaging applications.

Collaboration


Dive into the Rachela Popovtzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge