Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Radomir Kratchmarov is active.

Publication


Featured researches published by Radomir Kratchmarov.


Science | 2016

A long noncoding RNA associated with susceptibility to celiac disease.

Ainara Castellanos-Rubio; Nora Fernandez-Jimenez; Radomir Kratchmarov; Xiaobing Luo; Govind Bhagat; Peter H.R Green; Robert J. Schneider; Megerditch Kiledjian; Jose Ramon Bilbao; Sankar Ghosh

Long noncoding RNAs in inflammation Growing evidence suggests that long noncoding RNAs (lncRNAs) are important modulators of gene expression. Castellanos-Rubio et al. identified a lncRNA, lnc13, that suppresses inflammatory gene expression in macrophages (see the Perspective by Huarte). Lnc13 interacts with proteins that regulate chromatin accessibility. Stimulating macrophages with a cell wall component from bacteria decreased expression of lnc13 and increased the expression of several inflammatory genes. Decreased levels of lnc13 in intestinal tissue from individuals with celiac disease hint that lnc13 may also play a role in the pathogenesis of immune-mediated diseases. Science, this issue p. 91; see also p. 43 A specific RNA molecule can suppress inflammatory gene expression and may protect from gluten intolerance. [Also see Perspective by Huarte] Recent studies have implicated long noncoding RNAs (lncRNAs) as regulators of many important biological processes. Here we report on the identification and characterization of a lncRNA, lnc13, that harbors a celiac disease–associated haplotype block and represses expression of certain inflammatory genes under homeostatic conditions. Lnc13 regulates gene expression by binding to hnRNPD, a member of a family of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). Upon stimulation, lnc13 levels are reduced, thereby allowing increased expression of the repressed genes. Lnc13 levels are significantly decreased in small intestinal biopsy samples from patients with celiac disease, which suggests that down-regulation of lnc13 may contribute to the inflammation seen in this disease. Furthermore, the lnc13 disease-associated variant binds hnRNPD less efficiently than its wild-type counterpart, thus helping to explain how these single-nucleotide polymorphisms contribute to celiac disease.


Cell Reports | 2015

Asymmetric PI3K Signaling Driving Developmental and Regenerative Cell Fate Bifurcation.

Wen-Hsuan W. Lin; William C. Adams; Simone A. Nish; Yen-Hua Chen; Bonnie Yen; Nyanza J. Rothman; Radomir Kratchmarov; Takaharu Okada; Ulf Klein; Steven L. Reiner

Metazoan sibling cells often diverge in activity and identity, suggesting links between growth signals and cell fate. We show that unequal transduction of nutrient-sensitive PI3K/AKT/mTOR signaling during cell division bifurcates transcriptional networks and fates of kindred cells. A sibling B lymphocyte with stronger signaling, indexed by FoxO1 inactivation and IRF4 induction, undergoes PI3K-driven Pax5 repression and plasma cell determination, while its sibling with weaker PI3K activity renews a memory or germinal center B cell fate. PI3K-driven effector T cell determination silences TCF1 in one sibling cell, while its PI3K-attenuated sibling self-renews in tandem. Prior to bifurcations achieving irreversible plasma or effector cell fate determination, asymmetric signaling during initial divisions specifies a more proliferative, differentiation-prone lymphocyte in tandem with a more quiescent memory cell sibling. By triggering cell division but transmitting unequal intensity between sibling cells, nutrient-sensitive signaling may be a frequent arbiter of cell fate bifurcations during development and repair.


Cell Reports | 2016

Anabolism-Associated Mitochondrial Stasis Driving Lymphocyte Differentiation over Self-Renewal

William C. Adams; Yen-Hua Chen; Radomir Kratchmarov; Bonnie Yen; Simone A. Nish; Wen-Hsuan W. Lin; Nyanza J. Rothman; Larry L. Luchsinger; Ulf Klein; Meinrad Busslinger; Jeffrey C. Rathmell; Hans-Willem Snoeck; Steven L. Reiner

Regeneration requires related cells to diverge in fate. We show that activated lymphocytes yield sibling cells with unequal elimination of aged mitochondria. Disparate mitochondrial clearance impacts cell fate and reflects larger constellations of opposing metabolic states. Differentiation driven by an anabolic constellation of PI3K/mTOR activation, aerobic glycolysis, inhibited autophagy, mitochondrial stasis, and ROS production is balanced with self-renewal maintained by a catabolic constellation of AMPK activation, mitochondrial elimination, oxidative metabolism, and maintenance of FoxO1 activity. Perturbations up and down the metabolic pathways shift the balance of nutritive constellations and cell fate owing to self-reinforcement and reciprocal inhibition between anabolism and catabolism. Cell fate and metabolic state are linked by transcriptional regulators, such as IRF4 and FoxO1, with dual roles in lineage and metabolic choice. Instructing some cells to utilize nutrients for anabolism and differentiation while other cells catabolically self-digest and self-renew may enable growth and repair in metazoa.


Journal of Experimental Medicine | 2017

CD4+ T cell effector commitment coupled to self-renewal by asymmetric cell divisions

Simone A. Nish; Kyra D. Zens; Radomir Kratchmarov; Wen-Hsuan W. Lin; William C. Adams; Yen-Hua Chen; Bonnie Yen; Nyanza J. Rothman; Avinash Bhandoola; Hai-Hui Xue; Donna L. Farber; Steven L. Reiner

Upon infection, an activated CD4+ T cell produces terminally differentiated effector cells and renews itself for continued defense. In this study, we show that differentiation and self-renewal arise as opposing outcomes of sibling CD4+ T cells. After influenza challenge, antigen-specific cells underwent several divisions in draining lymph nodes (LN; DLNs) while maintaining expression of TCF1. After four or five divisions, some cells silenced, whereas some cells maintained TCF1 expression. TCF1-silenced cells were T helper 1–like effectors and concentrated in the lungs. Cells from earliest divisions were memory-like and concentrated in nondraining LN. TCF1-expressing cells from later divisions in the DLN could self-renew, clonally yielding a TCF1-silenced daughter cell as well as a sibling cell maintaining TCF1 expression. Some TCF1-expressing cells in DLNs acquired an alternative, follicular helper-like fate. Modeled differentiation experiments in vitro suggested that unequal PI3K/mechanistic target of rapamycin signaling drives intraclonal cell fate heterogeneity. Asymmetric division enables self-renewal to be coupled to production of differentiated CD4+ effector T cells during clonal selection.


Journal of Immunology | 2017

Cytoplasmic Form of Carlr lncRNA Facilitates Inflammatory Gene Expression upon NF-κB Activation

Ainara Castellanos-Rubio; Radomir Kratchmarov; Maialen Sebastian; Koldo Garcia-Etxebarria; Liher Garcia; Iñaki Irastorza; Sankar Ghosh

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of inflammation. To further understand the interaction between inflammatory signaling pathways and lncRNAs, we characterized the function of cardiac and apoptosis-related lncRNA (Carlr), an lncRNA expressed in both mouse and human cells of diverse tissues. Carlr expression is increased following NF-κB signaling in macrophages, with concomitant translocation to, and enrichment of, the transcript in the cytoplasm. Knockdown of Carlr results in impaired expression of NF-κB pathway genes and influences the interaction between macrophages and intestinal cells in an inflammatory environment. In human celiac disease patient samples, increased levels of the Carlr transcript were detected in the cytoplasm, alongside elevated expression of NF-κB pathway genes. These findings suggest that increased Carlr expression and/or cytoplasmic localization is required for efficient NF-κB signaling and is associated with the inflamed tissue state observed in human celiac disease.


Cell Reports | 2018

Asymmetric PI3K Activity in Lymphocytes Organized by a PI3K-Mediated Polarity Pathway

Yen-Hua Chen; Radomir Kratchmarov; Wen-Hsuan W. Lin; Nyanza J. Rothman; Bonnie Yen; William C. Adams; Simone A. Nish; Jeffrey C. Rathmell; Steven L. Reiner

SUMMARY Unequal transmission of nutritive signaling during cell division establishes fate disparity between sibling lymphocytes, but how asymmetric signaling becomes organized is not understood. We show that receptor-associated class I phosphatidylinositol 3-kinase (PI3K) signaling activity, indexed by phosphatidylinositol (3,4,5)-trisphosphate (PIP3) staining, is spatially restricted to the microtubule-organizing center and subsequently to one pole of the mitotic spindle in activated T and B lymphocytes. Asymmetric PI3K activity co-localizes with polarization of antigen receptor components implicated in class I PI3K signaling and with facultative glucose transporters whose trafficking is PI3K dependent and whose abundance marks cells destined for differentiation. Perturbation of class I PI3K activity disrupts asymmetry of upstream antigen receptors and downstream glucose transporter traffic. The roles of PI3K signaling in nutrient utilization, proliferation, and gene expression may have converged with the conserved role of PI3K signaling in cellular symmetry breaking to form a logic for regenerative lymphocyte divisions.


Immunology and Cell Biology | 2018

Metabolic control of cell fate bifurcations in a hematopoietic progenitor population

Radomir Kratchmarov; Sara Viragova; Min Jung Kim; Nyanza J. Rothman; Kang Liu; Boris Reizis; Steven L. Reiner

Growth signals drive hematopoietic progenitor cells to proliferate and branch into divergent cell fates, but how unequal outcomes arise from a common progenitor is not fully understood. We used steady‐state analysis of in vivo hematopoiesis and Fms‐related tyrosine kinase 3 ligand (Flt3L)‐induced in vitro differentiation of dendritic cells (DCs) to determine how growth signals regulate lineage bias. We found that Flt3L signaling induced anabolic activation and proliferation of DC progenitors, which was associated with DC differentiation. Perturbation of processes associated with quiescence and catabolism, including AMP‐activated protein kinase signaling, fatty acid oxidation, or mitochondrial clearance increased development of cDC2 cells at the expense of cDC1 cells. Conversely, scavenging anabolism‐associated reactive oxygen species skewed differentiation toward cDC1 cells. Sibling daughter cells of dividing DC progenitors exhibited unequal expression of the transcription factor interferon regulatory factor 8, which correlated with clonal divergence in FoxO3a signaling and population‐level bifurcation of cell fate. We propose that unequal transmission of growth signals during cell division might support fate branches during proliferative expansion of progenitors.


Blood Advances | 2018

TCF1 expression marks self-renewing human CD8+ T cells

Radomir Kratchmarov; Arthur M. Magun; Steven L. Reiner

Expression of the transcription factor T-cell factor 1 (TCF1) identifies antigen-experienced murine CD8+ T cells that retain potential for lymphoid recirculation and the ability to self-renew while producing more differentiated effector cells. We found that CD8+ T cells in the blood of both healthy and chronically infected humans expressed TCF1 at 3 distinct levels: high (TCF1-hi), intermediate (TCF1-int), and low (TCF1-lo). TCF1-hi cells could be found within both the naive and memory compartments and were characterized by relative quiescence and lack of immediate effector function. A substantial fraction of TCF1-int cells were found among memory cells, and TCF1-int cells exhibited robust immediate effector functions. TCF1-lo cells were most enriched in effector memory cells that expressed the senescence marker CD57. Following reactivation, TCF1-hi cells gave rise to TCF1-lo descendants while self-renewing the TCF1-hi progenitor. By contrast, reactivation of TCF1-lo cells produced more TCF1-lo cells without evidence of de-differentiating into TCF1-hi cells. Flow cytometric analyses of TCF1 expression from patient specimens may become a useful biomarker for adaptive immune function in response to vaccination, infection, autoimmunity, and cancer.


ImmunoHorizons | 2017

IRF4 Couples Anabolic Metabolism to Th1 Cell Fate Determination

Radomir Kratchmarov; Simone A. Nish; Wen-Hsuan W. Lin; William C. Adams; Yen-Hua Chen; Bonnie Yen; Nyanza J. Rothman; Ulf Klein; Steven L. Reiner

Anabolic metabolism in lymphocytes promotes plasmablast and cytotoxic T cell differentiation at the expense of self-renewal. Heightened expression and function of the transcription factor IFN regulatory factor 4 (IRF4) accompany enhanced anabolic induction and full commitment to functional differentiation in B cells and CD8+ T cells. In this study, we used a genetic approach to determine whether IRF4 plays an analogous role in Th1 cell induction. Our findings indicate that IRF4 promotes determined Th1 cell differentiation in tandem with anabolic metabolism of CD4+ T cells. IRF4-deficient CD4+ T cells stimulated in vitro exhibit impaired induction of Th1 gene expression and defective silencing of T cell factor 1 expression. IRF4-deficient CD4+ T cells also undergo a shift toward catabolic metabolism, with reduced mammalian target of rapamycin activation, cell size, and nutrient uptake, as well as increased mitochondrial clearance. These findings suggest that the ability to remodel metabolic states can be an essential gateway for altering cell fate.


Cell Reports | 2016

CD8+ T Lymphocyte Self-Renewal during Effector Cell Determination

Wen-Hsuan W. Lin; Simone A. Nish; Bonnie Yen; Yen-Hua Chen; William C. Adams; Radomir Kratchmarov; Nyanza J. Rothman; Avinash Bhandoola; Hai-Hui Xue; Steven L. Reiner

Collaboration


Dive into the Radomir Kratchmarov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avinash Bhandoola

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge