Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Radu Socoteanu is active.

Publication


Featured researches published by Radu Socoteanu.


Molecules | 2010

Microwave Synthesis, Basic Spectral and Biological Evaluation of Some Copper (II) Mesoporphyrinic Complexes

Rica Boscencu; Mihaela Ilie; Radu Socoteanu; Anabela Sousa Oliveira; Carolina Constantin; Monica Neagu; Gina Manda; Luis Filipe Vieira Ferreira

Cu(II) complexes with asymmetrical and symmetrical porphyrinic ligands were synthesized with superior yields using microwave irradiation. The paper presents the synthesis of 5-(3-hydroxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl)-21,23-Cu(II)-porphine in comparison to its symmetrical complex 5,10,15,20-meso-tetrakis-(4-carboxy-methylphenyl)-21,23-Cu(II) porphine. The two compounds were characterized by FT-IR, UV–Vis and EPR spectroscopy, which fully confirmed the structures. The spectral molecular absorption properties of the porphyrinic complexes were studied in organic solvents (methanol, ethanol, iso-propanol, dimethyl sulfoxide, dimethylformamide and methylene chloride), and the influence of the solvent polarity on the absorbance maxima is described. In order to establish their future potential in biomedical applications preliminary toxicological studies consisting of viability and proliferation of standard tumor cell lines (MCF7 and B16) testing was performed. The obtained results indicate a low toxicity for both compounds and further recommends them for testing in light activation protocols.


Carbohydrate Polymers | 2016

Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer

D.P. Ferreira; D.S. Conceição; Ricardo C. Calhelha; T. Sousa; Radu Socoteanu; Isabel C.F.R. Ferreira; L.F. Vieira Ferreira

Porphyrins and some of its derivatives are well known and widely used as photosensitizers (PSs) for Photodynamic Therapy of Cancer (PDT). The present study regards the characterization and evaluation of a synthesized asymmetric porphyrin dye in solution to be used as PS for PDT. This molecule was also incorporated into biopolymeric films composed by chitosan, polyethylene glycol (PEG) and gelatin in order to overtake some of the disadvantages inherent to the PS, but more important, to evaluate the potential of a system composed by the porphyrin/biopolymer to be applied as localized therapeutic agents. FTIR spectroscopy showed a strong interaction between the polymers involved in the preparation of the films under study: film 1: chitosan, film 2: chitosan/PEG and film 3: chitosan/gelatin. Photochemical studies were performed for the dye in solution and into the three different biopolymeric films. Ground state absorption showed the characteristic bands of these kinds of dyes in solution and also incorporated into the films. The films composed by porphyrin/chitosan and porphyrin into chitosan/gelatin, revealed the presence of non-emissive aggregates exhibiting a strong quenching effect in the fluorescence intensity, quantum yields and lifetimes. In this way, the system composed by the porphyrin incorporated into the chitosan/PEG film presents the best fluorescence quantum yield and lifetime. The transient absorption spectra were obtained for all the systems indicating the formation of an excited triplet state of the porphyrins following excitation, which takes special importance in the generation of phototoxic species namely singlet oxygen. Singlet oxygen quantum yields were also determined and the results obtained were very promising for the dye in solution but also for the dye into the different substrates. The release of the dye from the three different films onto a buffer solution was evaluated and we conclude that after a few days the dye was completely released by the substrates in acidic conditions. Confocal microscopy was used for the determination of the intracellular localization of the compound under study onto HeLa cells (human cervical cancer cells line). The evaluation of the PSs anticancer activity assumes special importance for PDT studies. The system should be less toxic in the dark and more active when irradiated, therefore, toxicity in the dark and phototoxicity studies onto HeLa cells were performed.


International Journal of Photoenergy | 2009

A Singlet Oxygen Photogeneration and Luminescence Study of Unsymmetrically Substituted Mesoporphyrinic Compounds

Anabela Sousa Oliveira; Dumitru Licsandru; Rica Boscencu; Radu Socoteanu; Veronica Nacea; Luis Filipe Vieira Ferreira

This paper deals with a series of new unsymmetrically substituted mesoporphyrins: 5-(2-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPO), 5-(3-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPO), 5-(4-hydroxyphenyl)-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPO), 5-(2-hydroxyphenyl)-10,15,20-tris-butyl-21,23-H-porphyrin (TBPO), and their parent nonsubstituted compounds, respectively, 5,10,15,20-tetrakis-phenyl-21,23-H-porphyrin (TPP) and 5,10,15,20-tetrakis-butyl-21,23-H-porphyrin (TBP). Several photophysical studies were carried out to access the influence of the unsymmetrical substitution at the porphyrinic macrocycle on porthyrins photophysical properties, especially porthyrins efficiency as singlet oxygen sensitizers. The quantum yields of singlet oxygen generation were determined in benzene ((TPP) = 0.66 0.05; (TPPO) = 0.69 0.04; (TPPO) = 0.62 0.04; (TPPO) = 0.73 0.03; (TBP) = 0.76 0.03; (TBPO) = 0.73 0.02) using the 5,10,15,20-tetraphenyl-21,23-H-porphine ((TPP) = 0.66) and Phenazine ((Phz) = 0.83) as reference compounds. Their fluorescence quantum yields were found to be ((TPPO) = 0.10 0.04; (TPPO) = 0.09 0.03; (TPPO) = 0.13 0.02; (TBP) = 0.08 0.03 and (TBPO) = 0.08 0.02 using 5,10,15,20-tetraphenyl-21,23-H-porphine as reference (TPP) = 0.13). Singlet state lifetimes were also determined in the same solvent. All the porphyrins presented very similar fluorescence lifetimes (mean values of (with , air equilibrated) = 9.6 0.3 nanoseconds and (without , argon purged) = 10.1 0.6 nanoseconds, resp.). The phosphorescence emission was found to be negligible for this series of unsymmetrically substituted mesoporphyrins, but an E-type, thermally activated, delayed fluorescence process was proved to occur at room temperature.


Molecules | 2017

Studies on the Synthesis, Photophysical and Biological Evaluation of Some Unsymmetrical Meso-Tetrasubstituted Phenyl Porphyrins

Rica Boscencu; Gina Manda; Natalia Radulea; Radu Socoteanu; Laura Ceafalan; Ionela Neagoe; Isabel Ferreira Machado; Selma Huveyda Basaga; Luis Filipe Vieira Ferreira

We designed three unsymmetrical meso-tetrasubstituted phenyl porphyrins for further development as theranostic agents for cancer photodynamic therapy (PDT): 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (P2.2), Zn(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Zn(II)2.2) and Cu(II)-5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin (Cu(II)2.2). The porphyrinic compounds were synthesized and their structures were confirmed by elemental analysis, FT-IR, UV-Vis, EPR and NMR. The compounds had a good solubility in polar/nonpolar media. P2.2 and, to a lesser extent, Zn(II)2.2 were fluorescent, albeit with low fluoresence quantum yields. P2.2 and Zn(II)2.2 exhibited PDT-acceptable values of singlet oxygen generation. A “dark” cytotoxicity study was performed using cells that are relevant for the tumor niche (HT-29 colon carcinoma cells and L929 fibroblasts) and for blood (peripheral mononuclear cells). Cellular uptake of fluorescent compounds, cell viability/proliferation and death were evaluated. P2.2 was highlighted as a promising theranostic agent for PDT in solid tumors considering that P2.2 generated PDT-acceptable singlet oxygen yields, accumulated into tumor cells and less in blood cells, exhibited good fluorescence within cells for imagistic detection, and had no significant cytotoxicity in vitro against tumor and normal cells. Complexing of P2.2 with Zn(II) or Cu(II) altered several of its PDT-relevant properties. These are consistent arguments for further developing P2.2 in animal models of solid tumors for in vivo PDT.


Molecules | 2015

Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions

Radu Socoteanu; Gina Manda; Rica Boscencu; Georgiana Vasiliu; Anabela Sousa Oliveira

In this paper, two tetrapyrrolic complexes, Zn(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin and Cu(II)-5-(3-hydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl)porphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM) showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II) complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.


International Journal of Molecular Sciences | 2011

Spectroscopic Behavior of Some A 3 B Type Tetrapyrrolic Complexes in Several Organic Solvents and Micellar Media

Rica Boscencu; Mihaela Ilie; Radu Socoteanu

The paper presents spectral studies of some unsymmetrical A3B tetrapyrrolic, porphyrin-type complexes with Cu(II) and Zn(II) in different solvents and micellar media aimed at estimating their properties in connection with the living cell. The results indicate that the position of the absorption and emission peaks is mostly influenced by the central metal ion and less by the environmental polarity or the peripheric substituents of the porphyrinic core. The comparison between the overall absorption and emission spectra of the compounds in methanol or cyclohexane vs. direct and reverse Triton X micellar systems, respectively, suggests for all compounds the localization at the interface between the polyethylene oxide chains and the tert-octyl-phenyl etheric residue of the Triton X-100 molecules. These findings could be important when testing the compounds embedded in liposomes or other delivery systems to the targeted cell.


International Journal of Photoenergy | 2015

Aggregation Behavior of Some Asymmetric Porphyrins versus Basic Biological Tests Response

Radu Socoteanu; Mihai Anastasescu; Anabela Sousa Oliveira; Gianina Dobrescu; Rica Boscencu; Carolina Constantin

Fractal analysis of free bases porphyrins was computed on atomic force microscopy (AFM) micrographs using two different methods: the correlation function method and the variable length scale method. The correlation function method provides fractal dimension only for short scale range; results indicate that only few images have fractal properties for short ranges; for the rest of them, no fractal dimension was found using the correlation function method. The variable length scale method occur information for long range scaling. All samples have fractal properties at higher scaling range. For three samples the correlation function method leads to the same fractal dimension as the variable length scale method and scaling ranges for both methods overlap. Results show the necessity to use both methods to describe the fractal properties of AB3  meso-porphyrins that may be used to predict their relative cell localization. In order to emphasize the influence of fractal and textural properties the results regarding their self-similarity and texture/morphology were further compared with their behavior in biological assessment, that is, functionality of some Jurkat cell lines.


Archive | 2011

Trends in Interdisciplinary Studies Revealing Porphyrinic Compounds Multivalency Towards Biomedical Application

Radu Socoteanu; Rica Boscencu; Anca Hirtopeanu; Gina Manda; Anabela Sousa Oliveira; Mihaela Ilie; Luis Filipe Vieira Ferreira

Porphyrins are a unique class of compounds widely present in nature. Due to their distinct chemical and photophysical properties they have a variety of applications, the most important being presented in Fig. 1. Porphyrin chemistry and their applications have undergone a renaissance in the last years reflected in the 20 volumes of the recent comprehensive work giving an overview of the field (Kadish K.M et al., 2002). Despite the impressive volume of data, the question about the actual trends and future involvement of porphyrins in biomedical applications is still a hot topic as reflected by the number of publications on photodynamic therapy (Fig.2). In the last decades a great deal of efforts from the scientific community focused on developing new therapeutic and diagnosis approaches in major diseases, like cancer and infection. One of the most dynamic fields of investigation is photodynamic therapy (PDT), which takes advantage of controlled oxidative stress for destroying pathogens. This article aims at reviewing major topics related to biomedical engineering, porphyrins for PDT and photodiagnosis (PDD). We do not intend to provide an exhaustive display and comment of the porphyrinoid structures, as a huge number on papers and reviews dealing with the subject have already been published. We emphasize herein that porphyrins are also among the most promising candidates to be used as fluorescent near infrared (NIR) probes for non-invasive diagnosis and this opens the possibility to perform simultaneously tumor imaging and treatment in the same approach. It is worth mentioning that, besides their medical applications, porphyrins are used in industrial and analytical applications as


Molecules | 2018

Tubular and Spherical SiO2 Obtained by Sol Gel Method for Lipase Immobilization and Enzymatic Activity

Crina Anastasescu; Silviu Preda; Adriana Rusu; Dana Culita; Gabriel Plavan; Stefan Strungaru; Jose Maria Calderon-Moreno; Cornel Munteanu; Catalina Gifu; Mirela Enache; Radu Socoteanu; Daniel G. Angelescu; Mihai Anastasescu; Mariuca Gartner; Ioan Balint; Maria Zaharescu

A wide range of hybrid biomaterials has been designed in order to sustain bioremediation processes by associating sol-gel SiO2 matrices with various biologically active compounds (enzymes, antibodies). SiO2 is a widespread, chemically stable and non-toxic material; thus, the immobilization of enzymes on silica may lead to improving the efficiency of biocatalysts in terms of endurance and economic costs. Our present work explores the potential of different hybrid morphologies, based on hollow tubes and solid spheres of amorphous SiO2, for enzyme immobilization and the development of competitive biocatalysts. The synthesis protocol and structural characterization of spherical and tubular SiO2 obtained by the sol gel method were fully investigated in connection with the subsequent immobilization of lipase from Rhizopus orizae. The immobilization is conducted at pH 6, lower than the isoelectric point of lipase and higher than the isoelectric point of silica, which is meant to sustain the physical interactions of the enzyme with the SiO2 matrix. The morphological, textural and surface properties of spherical and tubular SiO2 were investigated by SEM, nitrogen sorption, and electrokinetic potential measurements, while the formation and characterization of hybrid organic-inorganic complexes were studied by UV-VIS, FTIR-ATR and fluorescence spectroscopy. The highest degree of enzyme immobilization (as depicted from total organic carbon) was achieved for tubular morphology and the hydrolysis of p-nitrophenyl acetate was used as an enzymatic model reaction conducted in the presence of hybrid lipase–SiO2 complex.


Journal of The Serbian Chemical Society | 2009

New S-alkylated 1,2,4-triazoles incorporating diphenyl sulfone moieties with potential antibacterial activity

Stefania F. Barbuceanu; Gabriela Laura Almajan; Ioana Saramet; Constantin Draghici; Radu Socoteanu; Florica Barbuceanu

Collaboration


Dive into the Radu Socoteanu's collaboration.

Top Co-Authors

Avatar

Rica Boscencu

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar

Anabela Sousa Oliveira

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Mihaela Ilie

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgiana Vasiliu

Carol Davila University of Medicine and Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Neagu

University of Bucharest

View shared research outputs
Top Co-Authors

Avatar

D.P. Ferreira

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge