Rafael N. Stipp
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafael N. Stipp.
Infection and Immunity | 2011
Cristiane Duque; Rafael N. Stipp; Bing Wang; Daniel J. Smith; José Francisco Höfling; Howard K. Kuramitsu; Margaret J. Duncan; Renata O. Mattos-Graner
ABSTRACT The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of g bpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties.
Journal of Medical Microbiology | 2009
Alessandra C. Alves; Ruchele Dias Nogueira; Rafael N. Stipp; Flávia Pampolini; Antonio Bento Alves de Moraes; Reginaldo Bruno Gonçalves; José Francisco Höfling; Yihong Li; Renata O. Mattos-Graner
Transmission of Streptococcus mutans, a major dental caries pathogen, occurs mainly during the first 2.5 years of age. Children appear to acquire S. mutans mostly from their mothers, but few studies have investigated non-familial sources of S. mutans transmission. This study prospectively analysed initial S. mutans oral colonization in 119 children from nursery schools during a 1.5-year period and tracked the transmission from child to child, day-care caregiver to child and mother to child. Children were examined at baseline, when they were 5-13 months of age, and at 6-month intervals for determination of oral levels of S. mutans and development of caries lesions. Levels of S. mutans were also determined in caregivers and mothers. A total of 1392 S. mutans isolates (obtained from children, caregivers and mothers) were genotyped by arbitrarily primed PCR and chromosomal RFLP. Overall, 40.3 % of children were detectably colonized during the study, and levels of S. mutans were significantly associated with the development of caries lesions. Identical S. mutans genotypes were found in four nursery cohorts. No familial relationship existed in three of these cohorts, indicating horizontal transmission. Despite high oral levels of S. mutans identified in most of the caregivers, none of their genotypes matched those identified in the respective children. Only 50 % of children with high levels of S. mutans carried genotypes identified in their mothers. The results support previous evidence indicating that non-familial sources of S. mutans transmission exist, and indicate that this bacterium may be transmitted horizontally between children during the initial phases of S. mutans colonization in nursery environments.
PLOS ONE | 2013
Rafael N. Stipp; Heike Boisvert; Daniel J. Smith; José Francisco Höfling; Margaret J. Duncan; Renata O. Mattos-Graner
The two-component system VicRK and the orphan regulator CovR of Streptococcus mutans co-regulate a group of virulence genes associated with the synthesis of and interaction with extracellular polysaccharides of the biofilm matrix. Knockout mutants of vicK and covR display abnormal cell division and morphology phenotypes, although the gene function defects involved are as yet unknown. Using transcriptomic comparisons between parent strain UA159 with vicK (UAvic) or covR (UAcov) deletion mutants together with electrophoretic motility shift assays (EMSA), we identified genes directly regulated by both VicR and CovR with putative functions in cell wall/surface biogenesis, including gbpB, wapE, smaA, SMU.2146c, and lysM. Deletion mutants of genes regulated by VicR and CovR (wapE, lysM, smaA), or regulated only by VicR (SMU.2146c) or CovR (epsC) promoted significant alterations in biofilm initiation, including increased fragility, defects in microcolony formation, and atypical cell morphology and/or chaining. Significant reductions in mureinolytic activity and/or increases in DNA release during growth were observed in knockout mutants of smaA, wapE, lysM, SMU.2146c and epsC, implying roles in cell wall biogenesis. WapE and lysM mutations also affected cell hydrophobicity and sensitivity to osmotic or oxidative stress. Finally, vicR, covR and VicRK/CovR-targets (gbpB, wapE, smaA, SMU.2146c, lysM, epsC) are up-regulated in UA159 during biofilm initiation, in a sucrose-dependent manner. These data support a model in which VicRK and CovR coordinate cell division and surface biogenesis with the extracellular synthesis of polysaccharides, a process apparently required for formation of structurally stable biofilms in the presence of sucrose.
Oral Microbiology and Immunology | 2008
Rafael N. Stipp; Reginaldo Bruno Gonçalves; José Francisco Höfling; Daniel J. Smith; Renata O. Mattos-Graner
BACKGROUND Streptococcus mutans, a major dental caries pathogen, expresses several virulence genes that mediate its growth, accumulation on tooth surfaces, and acid-mediated tooth demineralization. GtfB and GtfC catalyze the extracellular synthesis of water-insoluble glucan matrix from sucrose, and are essential for accumulation of bacteria in the dental biofilm. GbpB, an essential protein of S. mutans, might also mediate cell-surface interaction with glucan. AIM/METHODS In this study, we determined the transcription levels of gtfB, gtfC, and gbpB, and several putative transcriptional response regulators (rr) at different phases of planktonic growth in 11 S. mutans strains. RESULTS Activities of gtfB and gtfC were growth-phase dependent and assumed divergent patterns in several strains during specific phases of growth, while gbpB activities appeared to be under modest influence of the growth phase. Transcription patterns of the rr vicR, covR, comE, ciaR, and rr1 were growth-phase dependent and some of these genes were expressed in a highly coordinated way. Each rr, except comE, was expressed by all the strains. Patterns of virulence and regulatory genes were, however, strain-specific. CONCLUSIONS The findings suggest that mechanisms controlling virulence gene expression are variable among genotypes, providing the notion that the genetic diversity of S. mutans may have important implications for understanding mechanisms that regulate the expression of virulence genes in this species.
Journal of Periodontology | 2011
Cássio Vicente Pereira; Rafael N. Stipp; Douglas C. Fonseca; Luciano José Pereira; José Francisco Höfling
BACKGROUND Microbial agents in root canal systems can induce periodontal inflammation. The aims of this study are to detect anaerobic microorganisms in endodontic-periodontal lesions, determine the genetic diversity among them, and assess the simultaneous colonization of the pulp and periodontal microenvironments by a single clone. METHODS Twenty-seven teeth of patients with endodontic-periodontal lesions were selected. Samples were spread on an agar-blood medium, the detection of each species was performed using a polymerase chain reaction, and the determination of the simultaneous presence of the same species in the microenvironments by one or more clones was determined using arbitrarily primed PCR. RESULTS Prevotella intermedia (Pi) was the most prevalent species of the colonies in periodontal pockets, whereas Porphyromonas gingivalis (Pg) and Pi were the more prevalent in root canals. Isolates of Pi and Pg were simultaneously identified in root canals and periodontal pockets. Eighteen percent of teeth exhibited the simultaneous colonization by Pg, Tannerella forsythia (previously T. forsythensis), and Porphyromonas endodontalis in the pulp and periodontal microenvironments. The presence of these species was noted even in niches from which no colonies were isolated. Seventeen different genotypes were found in periodontal and pulp sites, with the majority of sites colonized by one or two different genotypes. A high degree of genotype similarity was found for samples of Pg isolated from only one site as well as for those isolated from both microenvironments. CONCLUSION Different clones of Pi and Pg with a high intraspecific genotype similarity were found to colonize the same anatomic sites in endodontic-periodontal infections.
Journal of Periodontal Research | 2011
T. Meulman; Daiane Cristina Peruzzo; Rafael N. Stipp; P. F. Gonçalves; Enilson Antonio Sallum; Márcio Zaffalon Casati; Reginaldo Bruno Gonçalves; Francisco Humberto Nociti
BACKGROUND AND OBJECTIVE Periodontitis is a polymicrobial infection characterized by the loss of connective tissue attachment, periodontal ligament and alveolar bone. The aim of this study was to evaluate the impact of Porphyromonas gingivalis inoculation on the ligature-induced alveolar bone loss (ABL) model in rats. MATERIAL AND METHODS Forty male Wistar rats were randomly assigned to the following groups: G1, control (n = 10); G2, ligature-induced ABL (n = 15); and G3, ligature-induced ABL + P. gingivalis inoculation (n = 15). Rats in G2 and G3 were killed 15, 21 and 30 d after ligature placement, and the following parameters were assessed: microbiological load; ABL; and interleukin (IL)-1β (Il1beta)/Il1ra, Il6/Il10 and Rankl/osteoprotegerin (Opg) mRNA ratios in the gingival tissues, as determined by quantitative PCR. RESULTS Microbiological analyses demonstrated that rats in G1, G2 and G3 were positive for the presence of bacteria (determined using PCR amplification of the 16S gene), but that only the treatment sites of rats in G3 were positive for P. gingivalis at all time-points investigated. Histometrically, significant bone loss (p<0.001) was observed for both ligated groups (G2 and G3) compared with the nonligated group (G1), with higher ABL observed for G2 at all the experimental time-points. Furthermore, gene-expression analysis demonstrated that the presence of P. gingivalis in the dentogingival area significantly decreased the Il1β/Il1ra, Il6/Il10 and Rankl/Opg mRNA ratios compared with ligature alone. CONCLUSION Within the limits of this pilot study, it was concluded that inoculation of P. gingivalis affected the ligature-induced ABL model by the induction of an anti-inflammatory and antiresorptive host response.
Infection and Immunity | 2014
Julianna Joanna de Carvalho Moraes; Rafael N. Stipp; Erika N. Harth-Chu; Tarsila M. Camargo; José Francisco Höfling; Renata O. Mattos-Graner
ABSTRACT Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRK Ss ), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRK Ss regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.
Archives of Oral Biology | 2015
Thaís Manzano Parisotto; Rafael N. Stipp; Lidiany Karla Azevedo Rodrigues; Renata O. Mattos-Graner; L.S. Costa; Marinês Nobre-dos-Santos
BACKGROUND Insoluble polysaccharide (IP) has been associated with caries prevalence in young children. However, the power of IP to predict ECC needs to be demonstrated. AIMS To assess the relationships between early childhood caries (ECC) and extracellular insoluble polysaccharides (IP) in dental plaque, sugar exposure and cariogenic microorganisms. DESIGN Visible plaque on maxillary incisors was recorded, followed by caries diagnosis in 65 preschoolers (3-4 years) at baseline and after 1 year. Plaque was collected for mutans streptococci (MS), total microorganism (TM) and lactobacilli (LB) enumerations in selective media, as well as for IP analysis, which was later assessed by colorimetry. Sugar/sucrose exposure was assessed by a diet chart. RESULTS Positive correlations were found among the prevalence of caries and MS, TM, LB, solid sucrose and visible dental plaque. Additionally, children with IP concentrations in dental plaque higher than 2.36 μg/mg (odds ratio-OR=6.8), with visible plaque on maxillary incisors (OR=4.3), harbouring LB (OR=13) and exposed to solid sugar more than twice/day (OR=5) showed higher risk of developing caries (p<0.05). CONCLUSION Extracellular insoluble polysaccharides, solid sugar/sucrose, visible dental plaque and cariogenic microorganisms could predict caries development, partially explaining the ECC pattern.
Infection and Immunity | 2016
Lívia Araújo Alves; Ryota Nomura; Flávia Sammartino Mariano; Erika N. Harth-Chu; Rafael N. Stipp; Kazuhiko Nakano; Renata O. Mattos-Graner
ABSTRACT Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovR Sm ) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovR Sm -repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovR Sm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Oral Diseases | 2012
Tc Negrini; Cristiane Duque; Natália Leal Vizoto; Rafael N. Stipp; Flávia Sammartino Mariano; José Francisco Höfling; Edgard Graner; Renata O. Mattos-Graner
OBJECTIVE Streptococcus mutans are members of the oral microbiota that are implicated in dental caries and infective endocarditis. To adapt to environmental stresses encountered during host colonization, these bacteria employ two-component regulatory systems, which modulate global changes in gene expression. These include the systems VicRK and CovR. In this study, we investigate the influence of VicRK and CovR in S. mutans interactions with mononuclear and polymorphonuclear (PMN) phagocytes. METHODS Patterns of S. mutans uptake by murine macrophages were determined in strains, which differ in the production of proteins regulated by VicRK and CovR. Bacterial uptake by murine macrophages and by PMN in human blood was analyzed in vicK and covR knockout mutants obtained in strains UA159 and LT11. RESULTS Inactivation of covR did not affect uptake by macrophages, while vicK inactivation transiently reduced uptake only in LT11 (P < 0.05). In the two strains, inactivation of vicK and covR impaired uptake by PMN for a period of 1 h or more (P < 0.01-0.05). Mutant complementation with vicK or covR restored the PMN uptake phenotypes. CONCLUSION This study indicates that VicRK and CovR regulate functions that influence bacterial susceptibility to phagocytosis, suggesting a novel role for these systems in the virulence of S. mutans.