Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaele Ciampi is active.

Publication


Featured researches published by Raffaele Ciampi.


Journal of Clinical Investigation | 2005

Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer

Raffaele Ciampi; Jeffrey A. Knauf; Roswitha Kerler; Manoj Gandhi; Zhaowen Zhu; Marina N. Nikiforova; Hartmut M. Rabes; James A. Fagin; Yuri E. Nikiforov

Genes crucial for cancer development can be mutated via various mechanisms, which may reflect the nature of the mutagen. In thyroid papillary carcinomas, mutations of genes coding for effectors along the MAPK pathway are central for transformation. BRAF point mutation is most common in sporadic tumors. By contrast, radiation-induced tumors are associated with paracentric inversions activating the receptor tyrosine kinases RET and NTRK1. We report here a rearrangement of BRAF via paracentric inversion of chromosome 7q resulting in an in-frame fusion between exons 1-8 of the AKAP9 gene and exons 9-18 of BRAF. The fusion protein contains the protein kinase domain and lacks the autoinhibitory N-terminal portion of BRAF. It has elevated kinase activity and transforms NIH3T3 cells, which provides evidence, for the first time to our knowledge, of in vivo activation of an intracellular effector along the MAPK pathway by recombination. The AKAP9-BRAF fusion was preferentially found in radiation-induced papillary carcinomas developing after a short latency, whereas BRAF point mutations were absent in this group. These data indicate that in thyroid cancer, radiation activates components of the MAPK pathway primarily through chromosomal paracentric inversions, whereas in sporadic forms of the disease, effectors along the same pathway are activated predominantly by point mutations.


Oncogene | 2005

Molecular classification of papillary thyroid carcinoma: distinct BRAF , RAS , and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis

Thomas J. Giordano; Rork Kuick; Dafydd G. Thomas; David E. Misek; Michelle Vinco; Donita Sanders; Zhaowen Zhu; Raffaele Ciampi; Michael Roh; Kerby Shedden; Paul G. Gauger; Gerard M. Doherty; Norman W. Thompson; Samir M. Hanash; Ronald J. Koenig; Yuri E. Nikiforov

Thyroid cancer poses a significant clinical challenge, and our understanding of its pathogenesis is incomplete. To gain insight into the pathogenesis of papillary thyroid carcinoma, transcriptional profiles of four normal thyroids and 51 papillary carcinomas (PCs) were generated using DNA microarrays. The tumors were genotyped for their common activating mutations: BRAF V600E point mutation, RET/PTC1 and 3 rearrangement and point mutations of KRAS, HRAS and NRAS. Principal component analysis based on the entire expression data set separated the PCs into three groups that were found to reflect tumor morphology and mutational status. By combining expression profiles with mutational status, we defined distinct expression profiles for the BRAF, RET/PTC and RAS mutation groups. Using small numbers of genes, a simple classifier was able to classify correctly the mutational status of all 40 tumors with known mutations. One tumor without a detectable mutation was predicted by the classifier to have a RET/PTC rearrangement and was shown to contain one by fluorescence in situ hybridization analysis. Among the mutation-specific expression signatures were genes whose differential expression was a direct consequence of the mutation, as well as genes involved in a variety of biological processes including immune response and signal transduction. Expression of one mutation-specific differentially expressed gene, TPO, was validated at the protein level using immunohistochemistry and tissue arrays containing an independent set of tumors. The results demonstrate that mutational status is the primary determinant of gene expression variation within these tumors, a finding that may have clinical and diagnostic significance and predicts success for therapies designed to prevent the consequences of these mutations.


Clinical Cancer Research | 2006

Delineation, Functional Validation, and Bioinformatic Evaluation of Gene Expression in Thyroid Follicular Carcinomas with the PAX8-PPARG Translocation

Thomas J. Giordano; Amy Y.M. Au; Rork Kuick; Dafydd G. Thomas; Daniel R. Rhodes; Kenneth G. Wilhelm; Michelle Vinco; David E. Misek; Donita Sanders; Zhaowen Zhu; Raffaele Ciampi; Samir M. Hanash; Arul M. Chinnaiyan; Roderick J. Clifton-Bligh; Bruce G. Robinson; Yuri E. Nikiforov; Ronald J. Koenig

A subset of follicular thyroid carcinomas contains a balanced translocation, t(2;3)(q13;p25), that results in fusion of the paired box gene 8 (PAX8) and peroxisome proliferator-activated receptor γ (PPARG) genes with concomitant expression of a PAX8-PPARγ fusion protein, PPFP. PPFP is thought to contribute to neoplasia through a mechanism in which it acts as a dominant-negative inhibitor of wild-type PPARγ. To better understand this type of follicular carcinoma, we generated global gene expression profiles using DNA microarrays of a cohort of follicular carcinomas along with other common thyroid tumors and used the data to derive a gene expression profile characteristic of PPFP-positive tumors. Transient transfection assays using promoters of four genes whose expression was highly associated with the translocation showed that each can be activated by PPFP. PPFP had unique transcriptional activities when compared with PAX8 or PPARγ, although it had the potential to function in ways qualitatively similar to PAX8 or PPARγ depending on the promoter and cellular environment. Bioinformatics analyses revealed that genes with increased expression in PPFP-positive follicular carcinomas include known PPAR target genes; genes involved in fatty acid, amino acid, and carbohydrate metabolism; micro-RNA target genes; and genes on chromosome 3p. These results have implications for the neoplastic mechanism of these follicular carcinomas.


Endocrine Pathology | 2005

Alterations of the BRAF gene in thyroid tumors.

Raffaele Ciampi; Yuri E. Nikiforov

BRAF belongs to the RAF family of protein kinases that are important components of the MAPK signaling pathway mediating cell growth, differentiation and survival. Activating point mutation of the BRAF gene resulting in V600E (previously designated as V599E) is a common event in thyroid papillary carcinoma, being found in approx 40% of this tumor. It has strong association with classical papillary carcinoma and tall cell and possibly Warthin-like variants. This mutation also occurs in thyroid poorly differentiated and anaplastic carcinomas, usually those containing areas of papillary carcinoma. Alterations in the BRAF gene do not overlap with RAS mutations and RET/PTC rearrangement, indicating that activation of one of the effectors of the MAPK pathway is sufficient for papillary thyroid carcinogenesis. Recently, another mechanism of BRAF activation has been identified, which involves chromosome 7q inversion that results in the AKAP9-BRAF fusion. It is rare in sporadic papillary carcinomas and is more common in tumors associated with radiation exposure. Yet another mechanism of BRAF activation may involve copy number gain, which is seen in a significant portion of thyroid follicular tumors of both conventional and oncocytic (Hürthle cell) types.


Thyroid | 2012

Evidence of a Low Prevalence of RAS Mutations in a Large Medullary Thyroid Cancer Series

Raffaele Ciampi; Caterina Mian; Laura Fugazzola; Barbara Cosci; Cristina Romei; Susi Barollo; Valentina Cirello; Valeria Bottici; Giulia Marconcini; Pelizzo Maria Rosa; Maria Grazia Borrello; Fulvio Basolo; Clara Ugolini; Gabriele Materazzi; Aldo Pinchera; Rossella Elisei

BACKGROUND Approximately 60% of sporadic medullary thyroid carcinomas (sMTC) remain orphan of a recognized genetic cause. Recently, a high percentage of RAS point mutations have been described in RET-negative sMTC. The aim of this study was to assess the prevalence of RAS point mutations in a large series of MTC collected in four Italian centers. METHODS For this purpose, we studied codons 12, 13, and 61 of H-, K-, and N-RAS genes in 188 MTC samples, either hereditary or sporadic, by direct sequencing. Correlations between the RAS mutational status and the clinical-pathological features of MTC patients as well as a meta-analysis of all published data were performed. RESULTS The prevalence of RAS mutations in the present series of MTC was 10.1%, and 17.6% when considering only RET-negative cases. RAS mutations were found in MTC tumoral tissue, but not in peripheral blood indicating their somatic origin. A novel mutation in codon 72 (M72I) was found, but with a low or null transforming potential. No association was found between the presence of RAS mutations and the clinical-pathological features of the patients. Although not statistically significant, a positive association between the presence of RAS mutations and a better outcome was observed. The meta-analysis of all published studies confirmed a prevalence of 8.8% for RAS mutations in MTC. CONCLUSIONS The prevalence of RAS mutations in our MTC series was relatively low and consistent with the meta-analysis data. Only somatic RAS mutations were found and only in RET-negative sMTC. Likewise, MTCs that harbor a RAS mutation identify a subgroup of tumors with less aggressive behavior. To our knowledge, this is the largest series of MTCs studied for the presence of mutations in RAS genes and the first meta-analysis on this specific topic.


Nature Reviews Endocrinology | 2016

A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma.

Cristina Romei; Raffaele Ciampi; Rossella Elisei

The rearranged during transfection (RET) proto-oncogene was identified in 1985 and, very soon thereafter, a rearrangement named RET/PTC was discovered in papillary thyroid carcinoma (PTC). After this discovery, other RET rearrangements were found in PTCs, particularly in those induced by radiation. For many years, it was thought that these genetic alterations only occurred in PTC, but, in the past couple of years, some RET/PTC rearrangements have been found in other human tumours. 5 years after the discovery of RET/PTC rearrangements in PTC, activating point mutations in the RET proto-oncogene were discovered in both hereditary and sporadic forms of medullary thyroid carcinoma (MTC). In contrast to the alterations found in PTC, the activation of RET in MTC is mainly due to activating point mutations. Interestingly, in the past year, RET rearrangements that were different to those described in PTC were observed in sporadic MTC. The identification of RET mutations is relevant to the early diagnosis of hereditary MTC and the prognosis of sporadic MTC. The diagnostic and prognostic role of the RET/PTC rearrangements in PTC is less relevant but still important in patient management, particularly for deciding if a targeted therapy should be initiated. In this Review, we discuss the pathogenic, diagnostic and prognostic roles of the RET proto-oncogene in both PTC and MTC.


Molecular and Cellular Endocrinology | 2008

Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors

Raffaele Ciampi; Agnese Vivaldi; Cristina Romei; Alberto Del Guerra; Piero Salvadori; Barbara Cosci; Aldo Pinchera; Rossella Elisei

Fluorine-18-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) is based on cell capability to take-up glucose. While a significantly higher expression of the glucose transporter GLUT1 has been reported in thyroid tumors only few data are available on the expression of other GLUT isoforms. We studied several GLUT isoforms expression in thyroid tumor cell lines deriving from anaplastic (ARO, FRO), papillary (NPA), follicular (WRO) and medullary (TT) human thyroid carcinoma. GLUT1 and GLUT3 were also studied in 157 human thyroid malignant and benign tissues. Quantitative Real-time RT-PCR analysis revealed that GLUT1 mRNA levels were higher in less-differentiated cells (ARO, FRO) while GLUT3 mRNA levels were prevalent in well-differentiated cells (NPA, WRO). Accordingly, Western blot showed high expression and correct membrane targeting of GLUT1 protein in ARO and FRO and of GLUT3 protein in NPA and WRO. All cell lines were able to take-up different rates of (3)H-deoxy-glucose. The analysis of GLUT1 and GLUT3 mRNA expression in human thyroid tissues showed the prevalence of GLUT1, but not of GLUT3, in malignant with respect to normal tissues. Finally, both GLUT1 and GLUT3 showed a slightly higher expression in anaplastic than in well-differentiated tumors. In conclusion, we showed that GLUT1 and GLUT3 were the most important glucose transporters in the thyroid tumoral cells. In particular GLUT1 was the most prevalent in less-differentiated cells (ARO and FRO) while GLUT3 was the most prevalent in well-differentiated cells (NPA and WRO). A similar pattern of expression was found for GLUT1 but not for GLUT3 in human thyroid tumors.


Endocrine Pathology | 2005

BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization.

Raffaele Ciampi; Zhaowen Zhu; Yuri E. Nikiforov

Point mutation of the BRAF gene is a common genetic event in papillary thyroid carcinomas. More recently, it has been found that BRAF can also participate in chromosomal rearrangement. In this study, we explore yet another possible mechanism of BRAF alteration, which involves copy number gain. Using fluorescence in situ hybridization with BRAF specific and chromosome 7 centromeric probes, we studied 62 follicular thyroid tumors and 32 papillary carcinomas. We found that numerical changes in BRAF copy number were rare in papillary thyroid carcinomas, while they occurred in 16–45% of follicular tumors of conventional and oncocytic (Hürthle cell) types. They were due to amplification of the gene or gain of one or more copies of chromosome 7. Tetrasomy for chromosome 7 was overall the most common finding. The changes in BRAF copy number did not overlap with RAS mutations in follicular tumors. In a group of follicular carcinomas, tumors with BRAF copy number gain were significantly more often widely invasive (67%) compared to tumors with no copy number change (18%). By Western blotting, the tumors carrying four copies of the gene revealed higher expression of BRAF protein, suggesting that copy number gain may represent another mechanism of BRAF activation in thyroid tumors.


Endocrine-related Cancer | 2011

In silico and in vitro analysis of rare germline allelic variants of RET oncogene associated with medullary thyroid cancer

Barbara Cosci; Agnese Vivaldi; Cristina Romei; Federica Gemignani; Stefano Landi; Raffaele Ciampi; Alessia Tacito; Eleonora Molinaro; Laura Agate; Valeria Bottici; Virginia Cappagli; David Viola; Paolo Piaggi; Paolo Vitti; Aldo Pinchera; Rossella Elisei

Germline and somatic RET oncogene mutations are found in 98% hereditary and 40% sporadic medullary thyroid carcinomas. Our aim was to analyse by in silico and in vitro assays the transforming activity of six rare RET mutations (T338I, V648I, M918V, A883T, S904F and M848T). Six known RET mutations were used as controls. The in silico analysis showed the highest score value (i.e. 65) for S904F, M848T, M918T and C634R, whereas L790F, G691S, T338I and V648I had 0 score. Intermediate score values were obtained by A883T (score=55), M918V, V804M and Y791F (score=15). The in vitro focus formation assay showed that cells transfected with S904F, M918T, M848T or C634R generated the largest number of focus formation units (FFU). Intermediate numbers of FFU were observed in cells transfected with M918V, V804M, Y791F or A883T, while cells transfected with L790F, G691S, T338I or V648I showed a number of FFU similar to control cells. A positive correlation between the in silico score and in vitro FFU was found (P=0.0005). Only cells transfected with M918T or C634R grew faster and generated higher number of colonies in soft agar than control cells. However, the cells that were transfected with V804M produced an intermediate number of colonies. In conclusion, two of the six rare RET mutations, S904F and M848T possessed a relatively high transforming activity but a low aggressiveness; the other four mutations T338I, V648I, M918V and A883T were low or non-transforming, and their ability to induce tumoural transformation might be related to particular genetic conditions.


Molecular and Cellular Endocrinology | 2009

Re-differentiation of thyroid carcinoma cell lines treated with 5-Aza-2′-deoxycytidine and retinoic acid.

Agnese Vivaldi; Fy Miasaki; Raffaele Ciampi; Laura Agate; Paola Collecchi; Alessandra Capodanno; Aldo Pinchera; Rossella Elisei

We studied cell growth rate, mechanisms of growth inhibition, phenotype re-differentiation, expression of RARalpha, beta, gamma and differentiation thyroid genes before and after combined treatment with 5-Aza-CdR and RA (5-Aza/RA) of human thyroid carcinoma cell lines (FRO, WRO, TT). Furthermore, the activity and localization of the re-expressed sodium-iodide-symporter (NIS) protein was analyzed. After 5-Aza/RA treatment, all cell lines showed a significant reduction in cell growth. This was associated with apoptosis in the TT, with inhibition of cell proliferation in the WRO, and with cell cycle impairment in FRO and WRO. FRO and WRO treated with 5-Aza/RA lost the ability to grow in soft agar. FRO re-expressed thyroid transcription factor-1 and thyroglobulin, TT and WRO re-expressed PAX-8 and FRO and TT re-expressed RARbeta and NIS mRNA. Despite this expression, they were unable to take up iodine: a cytoplasmic localization of NIS protein was demonstrated in FRO. In conclusion, besides a significant reduction in cell growth rate and in the ability to grow in soft agar, treatment with 5-Aza/RA partially re-differentiated FRO and induced expression of NIS mRNA and protein in FRO and TT, but this treatment was unable to restore the functional activity of NIS, likely because it was located into the cytoplasm without reaching the plasma membrane.

Collaboration


Dive into the Raffaele Ciampi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge