Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaele Lopreiato is active.

Publication


Featured researches published by Raffaele Lopreiato.


Embo Molecular Medicine | 2010

Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli

Veronica Costa; Marta Giacomello; Roman Hudec; Raffaele Lopreiato; Gennady Ermak; Dmitri Lim; Walter Malorni; Kelvin J.A. Davies; Ernesto Carafoli; Luca Scorrano

Huntingtons disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, is accompanied by multiple mitochondrial alterations. Here, we show that mitochondrial fragmentation and cristae alterations characterize cellular models of HD and participate in their increased susceptibility to apoptosis. In HD cells, the increased basal activity of the phosphatase calcineurin dephosphorylates the pro‐fission dynamin related protein 1 (Drp1), increasing its mitochondrial translocation and activation, and ultimately leading to fragmentation of the organelle. The fragmented HD mitochondria are characterized by cristae alterations that are aggravated by apoptotic stimulation. A genetic analysis indicates that correction of mitochondrial elongation is not sufficient to rescue the increased cytochrome c release and cell death observed in HD cells. Conversely, the increased apoptosis can be corrected by manoeuvres that prevent fission and cristae remodelling. In conclusion, the cristae remodelling of the fragmented HD mitochondria contributes to their hypersensitivity to apoptosis.


Journal of Biological Chemistry | 2014

The Plasma Membrane Calcium Pump: New Ways to Look at an Old Enzyme

Raffaele Lopreiato; Marta Giacomello; Ernesto Carafoli

The three-dimensional structure of the PMCA pump has not been solved, but its basic mechanistic properties are known to repeat those of the other Ca2+ pumps. However, the pump also has unique properties. They concern essentially its numerous regulatory mechanisms, the most important of which is the autoinhibition by its C-terminal tail. Other regulatory mechanisms involve protein kinases and the phospholipids of the membrane in which the pump is embedded. Permanent activation of the pump, e.g. by calmodulin, is physiologically as harmful to cells as its absence. The concept is now emerging that the global control of cell Ca2+ may not be the main function of the pump; in some cell types, it could even be irrelevant. The main pump role would be the regulation of Ca2+ in cell microdomains in which the pump co-segregates with partners that modulate the Ca2+ message and transduce it to important cell functions.


Biochemical Journal | 2004

Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin.

Raffaele Lopreiato; Sonia Facchin; Geppo Sartori; Giorgio Arrigoni; Stefano Casonato; Maria Ruzzene; Lorenzo A. Pinna; Giovanna Carignani

The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea-Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.


Biofactors | 2011

Huntington's disease, calcium, and mitochondria

Marta Giacomello; Roman Hudec; Raffaele Lopreiato

Huntingtons disease (HD) is caused by a mutation that increases the number of CAG repeats in the gene encoding for the protein Huntingtin (Htt). The mutation results in the pathological expansion of the polyQ stretch that is normally present within the N-terminal region of Htt. Even if Htt is ubiquitously expressed in tissues, the changes in the protein finally result in the clinical manifestation of motor and cognitive impairments observed in HD patients. The molecular ethiology of the disease is obscure: a number of cellular and animal models are used as essential tools in experimental approaches aimed at understanding it. Biochemical changes have been described that correlate with the malfunction of HD neurons (primarily in the striatum): consensus is gradually emerging that the dyshomeostasis of Ca(2+) and/or mitochondria stress are important factors in the linkage of the Htt mutation to the onset and progression of the disease. Here, we present a succint overview of the changes of Htt, of its possible effect on the transcription of critical genes and of its causative role in the disturbance of the neuronal Ca(2+) homeostasis. Particular emphasis will be placed on the role of mitochondria as key player in the molecular pathogenesis of the disease.


FEBS Letters | 2003

Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency.

Sonia Facchin; Raffaele Lopreiato; Maria Ruzzene; Oriano Marin; Geppo Sartori; Claudia Götz; Mathias Montenarh; Giovanna Carignani; Lorenzo A. Pinna

Yeast piD261/Bud32 belongs to the piD261 family of atypical protein kinases structurally conserved, from Archaea to human. The disruption of its gene is causative of severely defective growth. Its human homologue, PRPK, interacts with and phosphorylates the oncosuppressor p53 protein, which is lacking in yeast. Here we show that on one hand piD261/Bud32 interacts with and phosphorylates human p53 in vitro, on the other hand PRPK can partially complement the phenotype of yeast lacking the gene encoding piD261/Bud32. These data indicate that, despite considerable structural divergence, members of the piD261 family from distantly related organisms display a remarkable functional conservation.


Biochemical Journal | 2002

Structure-function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life

Sonia Facchin; Raffaele Lopreiato; Silvia Stocchetto; Giorgio Arrigoni; Luca Cesaro; Oriano Marin; Giovanna Carignani; Lorenzo A. Pinna

The Saccharomyces cerevisiae YGR262c/BUD32 gene, whose disruption causes a severe pleiotropic phenotype, encodes a 261-residue putative protein kinase, piD261, whose structural homologues have been identified in a variety of organisms, including humans, and whose function is unknown. We have demonstrated previously that piD261, expressed in Escherichia coli as a recombinant protein, is a Ser/Thr kinase, as judged by its ability to autophosphorylate and to phosphorylate casein. Here we describe a mutational analysis showing that, despite low sequence similarity, the invariant residues representing the signature of protein kinases are conserved in piD261 and in its structural homologues, but are embedded in an altered context, suggestive of unique mechanistic properties. Especially noteworthy are: (i) three unique inserts of unknown function within the N-terminal lobe, (ii) the lack of a lysyl residue which in all other Ser/Thr kinases participates in the catalytic event by interacting with the transferred ATP gamma-phosphate, and which in piD261 is replaced by a threonine, and (iii) an exceedingly short activation loop including two serines, Ser-187 and Ser-189, whose autophosphorylation accounts for the appearance of an upshifted band upon SDS/PAGE. A mutant in which these serines are replaced by alanines was devoid of the upshifted band and displayed reduced catalytic activity. This would include piD261 in the category of protein kinases activated by phosphorylation, although it lacks the RD (Arg-Asp) motif which is typical of these enzymes.


Journal of Biological Chemistry | 2015

A Novel Mutation in Isoform 3 of the Plasma Membrane Ca2+ Pump Impairs Cellular Ca2+ Homeostasis in a Patient with Cerebellar Ataxia and Laminin Subunit 1α Mutations

Tito Calì; Raffaele Lopreiato; Joshua S. Shimony; Marisa Vineyard; Martina Frizzarin; Ginevra Zanni; Giuseppe Zanotti; Marisa Brini; Marwan Shinawi; Ernesto Carafoli

Background: Mutations in plasma membrane Ca2+-ATPase (PMCA) isoform 3 and in laminin subunit 1α have previously been linked to ataxic phenotypes. Results: A novel PMCA3 missense mutation co-occurring with a compound heterozygous mutation in laminin subunit 1α impaired cellular Ca2+ homeostasis. Conclusion: The two mutations could work synergistically to generate the disease phenotype. Significance: A digenic mechanism could be responsible for this case of cerebellar ataxia. The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype.


Cell Calcium | 2011

Mutations in PMCA2 and hereditary deafness: a molecular analysis of the pump defect.

Marta Giacomello; Agnese De Mario; Raffaele Lopreiato; Simona Primerano; Mara Campeol; Marisa Brini; Ernesto Carafoli

The inner ear converts sound waves into hearing signals through the mechanoelectrical transduction (MET) process. Deflection of the stereocilia bundle of hair cells causes the opening of channels that allow the entry of endolymph K(+) and Ca(2+). Ca(2+) that enters is crucial to the hearing process and is exported to the endolymph by the plasma membrane Ca(2+) pump (isoform PMCA2w/a): disturbances of the balance between Ca(2+) penetration and ejection, e.g. by pump mutations, generate deafness. Hearing loss caused by PMCA defects is frequently exacerbated by mutations in cadherin 23, a single pass stereociliar Ca(2+) binding protein that forms the tip links which permit the deflection of the stereocilia bundle and thus the opening of the MET channels. The PMCA2w/a pump ejects Ca(2+) to the endolymph even in the absence of the natural activator calmodulin. This satisfies the special Ca(2+) homeostasis requirements of the stereocilia/endolymph system. Here we have analyzed a mice and a human previously described pump mutant. The human mutant only exacerbated the deafness produced by a cadherin 23 mutation. The murine mutant overexpressed in model cells displayed an evident defect both in the basal activity of the pump and in the long range ejection of Ca(2+), the human mutant instead failed to impair the Ca(2+) ejection by the pump.


FEBS Journal | 2008

Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily

Caterina Peggion; Raffaele Lopreiato; Elena Casanova; Maria Ruzzene; Sonia Facchin; Lorenzo A. Pinna; Giovanna Carignani; Geppo Sartori

The Saccharomyces cerevisiae atypical protein kinase Bud32p is a member of the nuclear endopeptidase‐like, kinase, chromatin‐associated/kinase, endopeptidase‐like and other protein of small size (EKC/KEOPS) complex, known to be involved in the control of transcription and telomere homeostasis. Complex subunits (Pcc1p, Pcc2p, Cgi121p, Kae1p) represent, however, a small subset of the proteins able to interact with Bud32p, suggesting that this protein may be endowed with additional roles unrelated to its participation in the EKC/KEOPS complex. In this context, we investigated the relationships between Bud32p and the nuclear glutaredoxin Grx4p, showing that it is actually a physiological substrate of the kinase and that Bud32p contributes to the full functionality of Grx4p in vivo. We also show that this regulatory system is influenced by the phosphorylation of Bud32p at Ser258, which is specifically mediated by the Sch9p kinase [yeast homolog of mammalian protein kinase B (Akt/PKB)]. Notably, Ser258 phosphorylation of Bud32p does not alter the catalytic activity of the protein kinase per se, but positively regulates its ability to interact with Grx4p and thus to phosphorylate it. Interestingly, this novel signaling pathway represents a function of Bud32p that is independent from its role in the EKC/KEOPS complex, as the known functions of the complex in the regulation of transcription and telomere homeostasis are unaffected when the cascade is impaired. A similar relationship has already been observed in humans between Akt/PKB and p53‐related protein kinase (Bud32p homolog), and could indicate that this pathway is conserved throughout evolution.


Molecular and Cellular Endocrinology | 2002

Trout GH promoter analysis reveals a modular pattern of regulation consistent with the diversification of GH gene control and function in vertebrates.

Francesco Argenton; Silvia Vianello; Serena Bernardini; Raffaele Lopreiato; Lorenzo Colombo; Marino Bortolussi

In vertebrates, growth hormone (GH) gene expression requires the pituitary-specific transcription factor Pit-1/GHF1 but is differently regulated by a variety of factors in different vertebrate species. Here, we have studied the transcriptional activity of the trout GH (tGH) promoter, which is synergistically stimulated by cAMP and glucocorticoid. Gel shift assays indicated that Pit-1 binds as a dimer to three high affinity sites in the -226/+24 tGH region, and that recombinant cAMP response element (CRE)-binding protein (CREB) binds to a CRE situated between the two distal Pit-1 sites. Deletional and mutational transfection experiments, performed in pituitary Pit-1-expressing GC cells, showed that the different Pit-1 sites play distinct roles and are obligatory elements in the mechanisms mediating cAMP and glucocorticoid responses. Remarkably, the results suggest a hierarchical modular model of regulation of the tGH promoter, according to which a critical module, triggered by Pit-1 bound to the proximal Pit-1 site, is necessary and sufficient to turn on and drive basal levels of transcription. The latter may be stimulated synergistically by two Pit-1-dependent reciprocally non-cooperative auxiliary modules, activated by cAMP and glucocorticoid, respectively. Such modularity explains, in evolutionary terms, the crucial role played by Pit-1 in transcriptional activation and the emergence of the wide variety of mechanisms regulating transcriptional levels of GH, prolactin and other Pit-1-target genes in vertebrates.

Collaboration


Dive into the Raffaele Lopreiato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge