Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geppo Sartori is active.

Publication


Featured researches published by Geppo Sartori.


Journal of Biological Chemistry | 2014

Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition

Michela Carraro; Valentina Giorgio; Justina Šileikytė; Geppo Sartori; Michael Forte; Giovanna Lippe; Mario Zoratti; Ildikò Szabò; Paolo Bernardi

Background: Whether channel formation is a general feature of F-ATP synthase dimers across species is unknown. Results: Yeast F-ATP synthase dimers form Ca2+-dependent channels, and the e and g subunits facilitate pore formation in situ through dimerization. Conclusion: F-ATP synthase dimers form the permeability transition pore of yeast. Significance: Ca2+-dependent channel formation is a conserved feature of F-ATP synthases. Purified F-ATP synthase dimers of yeast mitochondria display Ca2+-dependent channel activity with properties resembling those of the permeability transition pore (PTP) of mammals. After treatment with the Ca2+ ionophore ETH129, which allows electrophoretic Ca2+ uptake, isolated yeast mitochondria undergo inner membrane permeabilization due to PTP opening. Yeast mutant strains ΔTIM11 and ΔATP20 (lacking the e and g F-ATP synthase subunits, respectively, which are necessary for dimer formation) display a striking resistance to PTP opening. These results show that the yeast PTP originates from F-ATP synthase and indicate that dimerization is required for pore formation in situ.


Journal of Medical Genetics | 2012

Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency

Leonardo Salviati; Eva Trevisson; Maria Angeles Rodriguez Hernandez; Alberto Casarin; Vanessa Pertegato; Mara Doimo; Matteo Cassina; Caterina Agosto; Maria Andrea Desbats; Geppo Sartori; Sabrina Sacconi; Luigi Memo; Orsetta Zuffardi; Rafael Artuch; Catarina M. Quinzii; Salvatore DiMauro; Michio Hirano; Carlos Santos-Ocaña; Plácido Navas

Background COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q10 (CoQ10). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ10 deficiency. Methods A complete molecular and biochemical characterisation of the patients fibroblasts and of a yeast model were performed. Results The study found reduced COQ4 expression (48% of controls), CoQ10 content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ10 to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ10. Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ10 biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ10 supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. Conclusion Mutations of COQ4 should be searched for in patients with CoQ10 deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ10 deficiency, as they could benefit from supplementation.


Biochemical Journal | 2004

Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin.

Raffaele Lopreiato; Sonia Facchin; Geppo Sartori; Giorgio Arrigoni; Stefano Casonato; Maria Ruzzene; Lorenzo A. Pinna; Giovanna Carignani

The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea-Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.


Journal of Inherited Metabolic Disease | 2013

Pontocerebellar hypoplasia type 6 caused by mutations in RARS2: definition of the clinical spectrum and molecular findings in five patients

Denise Cassandrini; Maria Roberta Cilio; Marzia Bianchi; Mara Doimo; Martina Balestri; Alessandra Tessa; Teresa Rizza; Geppo Sartori; Maria Chiara Meschini; Claudia Nesti; Giulia Tozzi; Vittoria Petruzzella; Fiorella Piemonte; Luigi Bisceglia; Claudio Bruno; Carlo Dionisi-Vici; Adele D’Amico; Fabiana Fattori; Rosalba Carrozzo; Leonardo Salviati; Filippo M. Santorelli; Enrico Bertini

Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.


FEBS Letters | 2003

Functional homology between yeast piD261/Bud32 and human PRPK: both phosphorylate p53 and PRPK partially complements piD261/Bud32 deficiency.

Sonia Facchin; Raffaele Lopreiato; Maria Ruzzene; Oriano Marin; Geppo Sartori; Claudia Götz; Mathias Montenarh; Giovanna Carignani; Lorenzo A. Pinna

Yeast piD261/Bud32 belongs to the piD261 family of atypical protein kinases structurally conserved, from Archaea to human. The disruption of its gene is causative of severely defective growth. Its human homologue, PRPK, interacts with and phosphorylates the oncosuppressor p53 protein, which is lacking in yeast. Here we show that on one hand piD261/Bud32 interacts with and phosphorylates human p53 in vitro, on the other hand PRPK can partially complement the phenotype of yeast lacking the gene encoding piD261/Bud32. These data indicate that, despite considerable structural divergence, members of the piD261 family from distantly related organisms display a remarkable functional conservation.


Yeast | 2001

Large‐scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes

Michele M. Bianchi; Saravuth Ngo; Micheline Vandenbol; Geppo Sartori; Alessandro Morlupi; Carlo Ricci; Stefania Stefani; Giovanni B. Morlino; François Hilger; Giovanna Carignani; Piotr P. Slonimski; Laura Frontali

Sequencing of the yeast genome has shown that about one‐third of the yeast ORFs code for unknown proteins. Many other have similarity to known genes, but still the cellular functions of the gene products are unknown. The aim of the B1 Consortium of the EUROFAN project was to perform a qualitative phenotypic analysis on yeast strains deleted for functionally orphan genes. To this end we set up a simple approach to detect growth defects of a relatively large number of strains in the presence of osmolytes, ethanol, high temperature, inhibitory compounds or drugs affecting protein biosynthesis, phosphorylation level or nucleic acids biosynthesis. We have now developed this procedure to a semi‐quantitative level, we have included new inhibitors, such as hygromycin B, benomyl, metals and additional drugs interfering with synthesis of nucleic acids, and we have performed phenotypic analysis on the deleted strains of 564 genes poorly characterized in respect to their cellular functions. About 30% of the deleted strains showed at least one phenotype: many of them were pleiotropic. For many gene deletions, the linkage between the deletion marker and the observed phenotype(s) was studied by tetrad analysis and their co‐segregation was demonstrated. Co‐segregation was found in about two‐thirds of the analysed strains showing phenotype(s). Copyright


Yeast | 1999

HOW TO BRING ORPHAN GENES INTO FUNCTIONAL FAMILIES

Michele M. Bianchi; Geppo Sartori; Micheline Vandenbol; Aneta Kaniak; Daniela Uccelletti; Cristina Mazzoni; Jean-Paul di Rago; Giovanna Carignani; Piotr P. Slonimski; Laura Frontali

In the framework of the B1 Consortium of the EUROFAN‐1 project, we set up a series of simple phenotypic tests that can be performed on a large number of strains at a time. This methodological approach was intended to help assign functions of putative genes coding for unknown proteins to several specific aspects of cell biology. The tests were chosen to study phenotypes which should be affected by numerous genes. In this report, we examined the sensitivity/resistance or the adaptation of the cell to physical or chemical stresses (thermotolerance, osmotolerance and ethanol sensitivity), the effects of the alteration of the level of protein phosphorylation (sensitivity or resistance to compounds affecting the activity of protein kinases or phosphatases) and the effects of compounds interfering with synthesis of nucleic acids or proteins. Deletions in 66 genes of unknown function have been tested in 21 different conditions. In many deletant strains, phenotypes were observed and, for the most promising candidates, tetrad analysis was performed in order to verify co‐segregation of the deletion marker with the phenotype. Copyright


Journal of Biological Chemistry | 2009

Functional Complementation in Yeast Allows Molecular Characterization of Missense Argininosuccinate Lyase Mutations

Eva Trevisson; Alberto Burlina; Mara Doimo; Vanessa Pertegato; Alberto Casarin; Luca Cesaro; Plácido Navas; Giuseppe Basso; Geppo Sartori; Leonardo Salviati

Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASLnull strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, “compound heterozygous” yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders.


Current Genetics | 1998

Evolution of mitochondrial DNA in yeast: gene order and structural organization of the mitochondrial genome of Saccharomyces uvarum

Sonia Minuzzo; Geppo Sartori; Alessandro Grapputo; Giovanna Carignani

Abstract We have determined the size, the restriction map and the gene order of the mitochondrial genome of the yeast Saccharomyces uvarum. Sequence analysis of the mitochondrial COXII gene confirmed the position of this yeast in the Saccharomyces cerevisiae-like group, near Saccharomyces cerevisiae and Saccharomyces douglasii. Most mitochondrial genes have been positioned on this approximately 57-kb long genome and three regions containing putative replication origins have been identified. The gene order of S. uvarum suggests that the mitochondrial genome of the S.cerevisiae-like yeasts could have evolved from an ancestral molecule, similar to that of S. uvarum, through specific genome rearrangements.


Human Mutation | 2013

Functional analysis of missense mutations of OAT, causing gyrate atrophy of choroid and retina.

Mara Doimo; Maria Andrea Desbats; Maria Cristina Baldoin; Elisabetta Lenzini; Giuseppe Basso; Elaine Murphy; Claudio Graziano; Marco Seri; Alberto Burlina; Geppo Sartori; Eva Trevisson; Leonardo Salviati

We studied eight kindreds with gyrate atrophy of choroid and retina (GA), a rare autosomal recessive disorder caused by mutations of the OAT gene, encoding the homoexameric enzyme ornithine‐delta‐aminotransferase. We identified four novel and five previously reported mutations. Missense alleles were expressed in yeast strain carrying a deletion of the orthologous of human OAT. All mutations markedly reduced enzymatic activity. However, the effect on the yeast growth was variable, suggesting that some mutations retain residual activity, below the threshold of the enzymatic assay. Mutant proteins were either highly unstable and rapidly degraded, or failed to assemble to form the active OAT hexamer. Where possible, fibroblast analysis confirmed these data. We found no correlation between the residual enzymatic activity and the age of onset, or the severity of symptoms. Moreover, the response to B6 was apparently not related to the specific mutations carried by patients. Overall these data suggest that other factors besides the specific OAT genotype modulate (GA) phenotype in patients. Finally, we found that 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR), an AMPK activator known to increase mitochondrial biogenesis, markedly stimulates OAT expression, thus representing a possible treatment for a subset of GA patients with hypomorphic alleles.

Collaboration


Dive into the Geppo Sartori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Frontali

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele M. Bianchi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge