Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaele Siano is active.

Publication


Featured researches published by Raffaele Siano.


Science | 2015

Eukaryotic plankton diversity in the sunlit ocean

Colomban de Vargas; Stéphane Audic; Nicolas Henry; Johan Decelle; Frédéric Mahé; Ramiro Logares; Enrique Lara; Cédric Berney; Noan Le Bescot; Ian Probert; Margaux Carmichael; Julie Poulain; Sarah Romac; Sébastien Colin; Jean-Marc Aury; Lucie Bittner; Samuel Chaffron; Micah Dunthorn; Stefan Engelen; Olga Flegontova; Lionel Guidi; Aleš Horák; Olivier Jaillon; Gipsi Lima-Mendez; Julius Lukeš; Shruti Malviya; Raphaël Morard; Matthieu Mulot; Eleonora Scalco; Raffaele Siano

Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.


Nucleic Acids Research | 2012

The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy

Laure Guillou; Dipankar Bachar; Stéphane Audic; David Bass; Cédric Berney; Lucie Bittner; Christophe Boutte; Gaétan Burgaud; Colomban de Vargas; Johan Decelle; Javier Campo; John R. Dolan; Micah Dunthorn; Bente Edvardsen; Maria Holzmann; Wiebe H. C. F. Kooistra; Enrique Lara; Noan Le Bescot; Ramiro Logares; Frédéric Mahé; Ramon Massana; Marina Montresor; Raphaël Morard; Fabrice Not; Jan Pawlowski; Ian Probert; Anne-Laure Sauvadet; Raffaele Siano; Thorsten Stoeck; Daniel Vaulot

The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR2, http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.


Current Biology | 2014

Patterns of Rare and Abundant Marine Microbial Eukaryotes

Ramiro Logares; Stéphane Audic; David Bass; Lucie Bittner; Christophe Boutte; Richard Christen; Jean-Michel Claverie; Johan Decelle; John R. Dolan; Micah Dunthorn; Bente Edvardsen; Angélique Gobet; Wiebe H. C. F. Kooistra; Frédéric Mahé; Fabrice Not; Hiroyuki Ogata; Jan Pawlowski; Massimo C. Pernice; Sarah Romac; Kamran Shalchian-Tabrizi; Nathalie Simon; Thorsten Stoeck; Sébastien Santini; Raffaele Siano; Patrick Wincker; Adriana Zingone; Thomas A. Richards; Colomban de Vargas; Ramon Massana

BACKGROUND Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. RESULTS Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. CONCLUSIONS We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time.


Environmental Microbiology | 2015

Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

Ramon Massana; Angélique Gobet; Stéphane Audic; David Bass; Lucie Bittner; Christophe Boutte; Aurélie Chambouvet; Richard Christen; Jean-Michel Claverie; Johan Decelle; John R. Dolan; Micah Dunthorn; Bente Edvardsen; Irene Forn; Dominik Forster; Laure Guillou; Olivier Jaillon; Wiebe H. C. F. Kooistra; Ramiro Logares; Frédéric Mahé; Fabrice Not; Hiroyuki Ogata; Jan Pawlowski; Massimo C. Pernice; Ian Probert; Sarah Romac; Thomas A. Richards; Sébastien Santini; Kamran Shalchian-Tabrizi; Raffaele Siano

Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date.


Advances in Botanical Research | 2012

Diversity and Ecology of Eukaryotic Marine Phytoplankton

Fabrice Not; Raffaele Siano; Wiebe H. C. F. Kooistra; Nathalie Simon; Daniel Vaulot; Ian Probert

Abstract Marine phytoplankton, the photosynthetic microorganisms drifting in the illuminated waters of our planet, are extremely diverse, being distributed across major eukaryotic lineages. About 5000 eukaryotic species have been described with traditional morphological methods, but recent environmental molecular surveys are unveiling an ever-increasing diversity, including entirely new lineages with no described representatives. Eukaryotic marine phytoplankton are significant contributors to major global processes (such as oxygen production, carbon fixation and CO2 sequestration, nutrient recycling), thereby sustaining the life of most other aquatic organisms. In modern oceans, the most diverse and ecologically significant eukaryotic phytoplankton taxa are the diatoms, the dinoflagellates, the haptophytes and the small prasinophytes, some of which periodically form massive blooms visible in satellite images. Evidence is now accumulating that many phytoplankton taxa are actually mixotrophs, exhibiting alternate feeding strategies depending on environmental conditions (e.g. grazing on prey or containing symbiotic organisms), thus blurring the boundary between autotrophs and heterotrophs in the ocean.


Phycologia | 2009

Unarmoured and Thin-Walled Dinoflagellates from The Gulf of Naples, With The Description of Woloszynskia Cincta sp. nov. (Dinophyceae, Suessiales)

Raffaele Siano; Wiebe H. C. F. Kooistra; Marina Montresor; Adriana Zingone

R. Siano, W.H.C.F. Kooistra, M. Montresor and A. Zingone. 2009. Unarmoured and thin-walled dinoflagellates from the Gulf of Naples, with the description of Woloszynskia cincta sp. nov. (Dinophyceae, Suessiales). Phycologia 48: 44–65. DOI: 10.2216/08-61.1. The unarmoured dinoflagellate assemblage of the Gulf of Naples has been investigated in the frame of a 1-year sampling of natural surface samples collected weekly at a coastal station c. 2 miles offshore. Twenty-six strains of unarmoured dinoflagellates were brought into culture by means of serial dilution. Observations at both light and scanning electron microscopy (SEM) together with molecular phylogenetic analyses allowed identification of eight dinoflagellate species. Gymodinium aureolum, Karlodinium veneficum, Protodinium simplex and Takayama acrotrocha were previously reported in the Mediterranean; whereas, Karlodinium ballantinum and Lepidodinium viride together with a taxon identified as Karenia cf. longicanalis are recorded in the basin for the first time. A new thin-walled dinoflagellate is described as Woloszynskia cincta sp. nov. on the basis of morphological results. Molecular analysis showed that Woloszynskia cincta is closely related to W. halophila and W. pseudopalustris and only distantly related to W. pascheri. In Protodinium simplex, a straight acrobase and an arrangement of the amphiesmal vesicles in latitudinal series were revealed by SEM observations, demonstrating the relatedness of this species with woloszynskioid dinoflagellates. Based on new morphological information on Karlodinium species, Gyrodinium corsicum is transferred to Karlodinium corsicum. New morphological features are identified for the recognition of Takayama acrotrocha, such as the arrangement of the acrobase and the presence of a pore on the ventral side of the cell. The latter species was found to be genetically distinct from other species in the genus Takayama, which is monophyletic.


The ISME Journal | 2013

Vampires in the oceans: predatory cercozoan amoebae in marine habitats

Cédric Berney; Sarah Romac; Frédéric Mahé; Sébastien Santini; Raffaele Siano; David Bass

Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.


Journal of Phycology | 2013

A new potentially toxic Azadinium species (Dinophyceae) from the Mediterranean Sea, A. dexteroporum sp. nov.

Isabella Percopo; Raffaele Siano; Rachele Rossi; Vittorio Soprano; Diana Sarno; Adriana Zingone

A new photosynthetic planktonic marine dinoflagellate, Azadinium dexteroporum sp. nov., is described from the Gulf of Naples (South Tyrrhenian Sea, Mediterranean Sea). The plate formula of the species, Po, cp, X, 4′, 3a, 6″, 6C, 5?S, 6‴ and 2″″, is typical for this recently described genus. Azadinium dexteroporum is the smallest rep‐resentative of the genus (8.5 μm average length, 6.2 μm average width) and shares the presence of a small antapical spine with the type species A. spinosum and with A. polongum. However, it differs from all other Azadinium species for the markedly asymmetrical Po plate and the position of the ventral pore, which is located at the right posterior end of the Po plate. Another peculiarity of A. dexteroporum is the pronounced concavity of the second intercalary plate (2a), which appears collapsed with respect to the other plates. Phylogenetic analyses based on the large subunit 28S rDNA (D1/D2) and the internal transcribed spacer (ITS rDNA) support the attribution of A. dexteroporum to the genus Azadinium and its separation from the other known species. LC/MS‐TOF analysis shows that Azadinium dex‐teroporum produces azaspiracids in low amounts. Some of them have the same molecular weight as known compounds such as azaspiracid‐3 and ‐7 and Compound 3 from Amphidoma languida, as well as similar fragmentation patterns in some cases. This is the first finding of a species producing azapiracids in the Mediterranean Sea.


Journal of Phycology | 2014

Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians

Ian Probert; Raffaele Siano; Camille Poirier; Johan Decelle; Tristan Biard; Akihiro Tuji; Noritoshi Suzuki; Fabrice Not

Symbiotic interactions between pelagic hosts and microalgae have received little attention, although they are widespread in the photic layer of the world ocean, where they play a fundamental role in the ecology of the planktonic ecosystem. Polycystine radiolarians (including the orders Spumellaria, Collodaria and Nassellaria) are planktonic heterotrophic protists that are widely distributed and often abundant in the ocean. Many polycystines host symbiotic microalgae within their cytoplasm, mostly thought to be the dinoflagellate Scrippsiella nutricula, a species originally described by Karl Brandt in the late nineteenth century as Zooxanthella nutricula. The free‐living stage of this dinoflagellate has never been characterized in terms of morphology and thecal plate tabulation. We examined morphological characters and sequenced conservative ribosomal markers of clonal cultures of the free‐living stage of symbiotic dinoflagellates isolated from radiolarian hosts from the three polycystine orders. In addition, we sequenced symbiont genes directly from several polycystine‐symbiont holobiont specimens from different oceanic regions. Thecal plate arrangement of the free‐living stage does not match that of Scrippsiella or related genera, and LSU and SSU rDNA‐based molecular phylogenies place these symbionts in a distinct clade within the Peridiniales. Both phylogenetic analyses and the comparison of morphological features of culture strains with those reported for other closely related species support the erection of a new genus that we name Brandtodinium gen. nov. and the recombination of S. nutricula as B. nutricula comb. nov.


Environmental Microbiology | 2016

Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding

Noan Le Bescot; Frédéric Mahé; Stéphane Audic; Céline Dimier; Marie-José Garet; Julie Poulain; Patrick Wincker; Colomban de Vargas; Raffaele Siano

Dinoflagellates (Alveolata) are one of the ecologically most important groups of modern phytoplankton. Their biological complexity makes assessment of their global diversity and community structure difficult. We used massive V9 18S rDNA sequencing from 106 size-fractionated plankton communities collected across the worlds surface oceans during the Tara Oceans expedition (2009-2012) to assess patterns of pelagic dinoflagellate diversity and community structuring over global taxonomic and ecological scales. Our data and analyses suggest that dinoflagellate diversity has been largely underestimated, representing overall ∼ 1/2 of protistan rDNA metabarcode richness assigned at ≥ 90% to a reference sequence in the worlds surface oceans. Dinoflagellate metabarcode diversity and abundance display regular patterns across the global scale, with different order-level taxonomic compositions across organismal size fractions. While the pico to nano-planktonic communities are composed of an extreme diversity of metabarcodes assigned to Gymnodiniales or are simply undetermined, most micro-dinoflagellate metabarcodes relate to the well-referenced Gonyaulacales and Peridiniales orders, and a lower abundance and diversity of essentially symbiotic Peridiniales is unveiled in the meso-plankton. Our analyses could help future development of biogeochemical models of pelagic systems integrating the separation of dinoflagellates into functional groups according to plankton size classes.

Collaboration


Dive into the Raffaele Siano's collaboration.

Top Co-Authors

Avatar

Adriana Zingone

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Diana Sarno

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Johan Decelle

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Ian Probert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramiro Logares

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Frédéric Mahé

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wiebe H. C. F. Kooistra

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge