Stéphane Audic
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stéphane Audic.
Nucleic Acids Research | 2008
Alexis Dereeper; Valentin Guignon; Guillaume Blanc; Stéphane Audic; S. Buffet; François Chevenet; Jean-François Dufayard; Stéphane Guindon; Vincent Lefort; Magali Lescot; Jean-Michel Claverie
Phylogenetic analyses are central to many research areas in biology and typically involve the identification of homologous sequences, their multiple alignment, the phylogenetic reconstruction and the graphical representation of the inferred tree. The Phylogeny.fr platform transparently chains programs to automatically perform these tasks. It is primarily designed for biologists with no experience in phylogeny, but can also meet the needs of specialists; the first ones will find up-to-date tools chained in a phylogeny pipeline to analyze their data in a simple and robust way, while the specialists will be able to easily build and run sophisticated analyses. Phylogeny.fr offers three main modes. The ‘One Click’ mode targets non-specialists and provides a ready-to-use pipeline chaining programs with recognized accuracy and speed: MUSCLE for multiple alignment, PhyML for tree building, and TreeDyn for tree rendering. All parameters are set up to suit most studies, and users only have to provide their input sequences to obtain a ready-to-print tree. The ‘Advanced’ mode uses the same pipeline but allows the parameters of each program to be customized by users. The ‘A la Carte’ mode offers more flexibility and sophistication, as users can build their own pipeline by selecting and setting up the required steps from a large choice of tools to suit their specific needs. Prior to phylogenetic analysis, users can also collect neighbors of a query sequence by running BLAST on general or specialized databases. A guide tree then helps to select neighbor sequences to be used as input for the phylogeny pipeline. Phylogeny.fr is available at: http://www.phylogeny.fr/
PLOS Genetics | 2006
Pierre-Edouard Fournier; David Vallenet; Valérie Barbe; Stéphane Audic; Hiroyuki Ogata; Laurent Poirel; Hervé Richet; Catherine Robert; Sophie Mangenot; Chantal Abergel; Patrice Nordmann; Jean Weissenbach; Didier Raoult; Jean-Michel Claverie
Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island—the largest identified to date—in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.
Science | 2015
Colomban de Vargas; Stéphane Audic; Nicolas Henry; Johan Decelle; Frédéric Mahé; Ramiro Logares; Enrique Lara; Cédric Berney; Noan Le Bescot; Ian Probert; Margaux Carmichael; Julie Poulain; Sarah Romac; Sébastien Colin; Jean-Marc Aury; Lucie Bittner; Samuel Chaffron; Micah Dunthorn; Stefan Engelen; Olga Flegontova; Lionel Guidi; Aleš Horák; Olivier Jaillon; Gipsi Lima-Mendez; Julius Lukeš; Shruti Malviya; Raphaël Morard; Matthieu Mulot; Eleonora Scalco; Raffaele Siano
Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.
BMC Evolutionary Biology | 2010
Alexis Dereeper; Stéphane Audic; Jean-Michel Claverie; Guillaume Blanc
BackgroundThe right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task.ResultsTo fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform.ConclusionsBLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr
Nucleic Acids Research | 2006
Fabrice Armougom; Sébastien Moretti; Olivier Poirot; Stéphane Audic; Pierre Dumas; Basile Schaeli; Vladimir Keduas; Cedric Notredame
Expresso is a multiple sequence alignment server that aligns sequences using structural information. The user only needs to provide sequences. The server runs BLAST to identify close homologues of the sequences within the PDB database. These PDB structures are used as templates to guide the alignment of the original sequences using structure-based sequence alignment methods like SAP or Fugue. The final result is a multiple sequence alignment of the original sequences based on the structural information of the templates. An advanced mode makes it possible to either upload private structures or specify which PDB templates should be used to model each sequence. Providing the suitable structural information is available, Expresso delivers sequence alignments with accuracy comparable with structure-based alignments. The server is available on .
Nucleic Acids Research | 2012
Laure Guillou; Dipankar Bachar; Stéphane Audic; David Bass; Cédric Berney; Lucie Bittner; Christophe Boutte; Gaétan Burgaud; Colomban de Vargas; Johan Decelle; Javier Campo; John R. Dolan; Micah Dunthorn; Bente Edvardsen; Maria Holzmann; Wiebe H. C. F. Kooistra; Enrique Lara; Noan Le Bescot; Ramiro Logares; Frédéric Mahé; Ramon Massana; Marina Montresor; Raphaël Morard; Fabrice Not; Jan Pawlowski; Ian Probert; Anne-Laure Sauvadet; Raffaele Siano; Thorsten Stoeck; Daniel Vaulot
The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR2, http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.
PLOS Genetics | 2006
Hiroyuki Ogata; Bernard La Scola; Stéphane Audic; Patricia Renesto; Guillaume Blanc; Catherine Robert; Pierre-Edouard Fournier; Jean-Michel Claverie; Didier Raoult
The recently sequenced Rickettsia felis genome revealed an unexpected plasmid carrying several genes usually associated with DNA transfer, suggesting that ancestral rickettsiae might have been endowed with a conjugation apparatus. Here we present the genome sequence of Rickettsia bellii, the earliest diverging species of known rickettsiae. The 1,552,076 base pair–long chromosome does not exhibit the colinearity observed between other rickettsia genomes, and encodes a complete set of putative conjugal DNA transfer genes most similar to homologues found in Protochlamydia amoebophila UWE25, an obligate symbiont of amoebae. The genome exhibits many other genes highly similar to homologues in intracellular bacteria of amoebae. We sought and observed sex pili-like cell surface appendages for R. bellii. We also found that R. bellii very efficiently multiplies in the nucleus of eukaryotic cells and survives in the phagocytic amoeba, Acanthamoeba polyphaga. These results suggest that amoeba-like ancestral protozoa could have served as a genetic “melting pot” where the ancestors of rickettsiae and other bacteria promiscuously exchanged genes, eventually leading to their adaptation to the intracellular lifestyle within eukaryotic cells.
PLOS Biology | 2012
Jan Pawlowski; Stéphane Audic; Sina Adl; David Bass; Lassaâd Belbahri; Cédric Berney; Samuel S. Bowser; Ivan Čepička; Johan Decelle; Micah Dunthorn; Anna Maria Fiore-Donno; Gillian H. Gile; Maria Holzmann; Regine Jahn; Miloslav Jirků; Patrick J. Keeling; Martin Kostka; Alexander Kudryavtsev; Enrique Lara; Julius Lukeš; David G. Mann; Edward A. D. Mitchell; Frank Nitsche; Maria Romeralo; Gary W. Saunders; Alastair G. B. Simpson; Alexey V. Smirnov; John L. Spouge; Rowena Stern; Thorsten Stoeck
A group of protist experts proposes a two-step DNA barcoding approach, comprising a universal eukaryotic pre-barcode followed by group-specific barcodes, to unveil the hidden biodiversity of microbial eukaryotes.
PLOS Biology | 2005
Hiroyuki Ogata; Patricia Renesto; Stéphane Audic; Catherine Robert; Guillaume Blanc; Pierre-Edouard Fournier; Hugues Parinello; Jean-Michel Claverie; Didier Raoult
We sequenced the genome of Rickettsia felis, a flea-associated obligate intracellular α-proteobacterium causing spotted fever in humans. Besides a circular chromosome of 1,485,148 bp, R. felis exhibits the first putative conjugative plasmid identified among obligate intracellular bacteria. This plasmid is found in a short (39,263 bp) and a long (62,829 bp) form. R. felis contrasts with previously sequenced Rickettsia in terms of many other features, including a number of transposases, several chromosomal toxin–antitoxin genes, many more spoT genes, and a very large number of ankyrin- and tetratricopeptide-motif-containing genes. Host-invasion-related genes for patatin and RickA were found. Several phenotypes predicted from genome analysis were experimentally tested: conjugative pili and mating were observed, as well as β-lactamase activity, actin-polymerization-driven mobility, and hemolytic properties. Our study demonstrates that complete genome sequencing is the fastest approach to reveal phenotypic characters of recently cultured obligate intracellular bacteria.
Science | 2015
Gipsi Lima-Mendez; Karoline Faust; Nicolas Henry; Johan Decelle; Sébastien Colin; Fabrizio Carcillo; Samuel Chaffron; J. Cesar Ignacio-Espinosa; Simon Roux; Flora Vincent; Lucie Bittner; Youssef Darzi; Jun Wang; Stéphane Audic; Léo Berline; Gianluca Bontempi; Ana María Cabello; Laurent Coppola; Francisco M. Cornejo-Castillo; Francesco d'Ovidio; Luc De Meester; Isabel Ferrera; Marie-José Garet-Delmas; Lionel Guidi; Elena Lara; Stephane Pesant; Marta Royo-Llonch; Guillem Salazar; Pablo Sánchez; Marta Sebastián
Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.