Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafick-Pierre Sekaly is active.

Publication


Featured researches published by Rafick-Pierre Sekaly.


Journal of Experimental Medicine | 2003

HIV-1 Viremia Prevents the Establishment of Interleukin 2–producing HIV-specific Memory CD4+ T Cells Endowed with Proliferative Capacity

Souheil-Antoine Younes; Bader Yassine-Diab; Alain R. Dumont; Mohamed-Rachid Boulassel; Zvi Grossman; Jean-Pierre Routy; Rafick-Pierre Sekaly

CD4+ T cell responses are associated with disease control in chronic viral infections. We analyzed human immunodeficiency virus (HIV)-specific responses in ten aviremic and eight viremic patients treated during primary HIV-1 infection and for up to 6 yr thereafter. Using a highly sensitive 5-(and-6)-carboxyfluorescein diacetate-succinimidyl ester–based proliferation assay, we observed that proliferative Gag and Nef peptide-specific CD4+ T cell responses were 30-fold higher in the aviremic patients. Two subsets of HIV-specific memory CD4+ T cells were identified in aviremic patients, CD45RA− CCR7+ central memory cells (Tcm) producing exclusively interleukin (IL)-2, and CD45RA− CCR7− effector memory cells (Tem) that produced both IL-2 and interferon (IFN)-γ. In contrast, in viremic, therapy-failing patients, we found significant frequencies of Tem that unexpectedly produced exclusively IFN-γ. Longitudinal analysis of HIV epitope–specific CD4+ T cells revealed that only cells that had the capacity to produce IL-2 persisted as long-term memory cells. In viremic patients the presence of IFN-γ–producing cells was restricted to periods of elevated viremia. These findings suggest that long-term CD4+ T cell memory depends on IL-2–producing CD4+ T cells and that IFN-γ only–producing cells are short lived. Our data favor a model whereby competent HIV-specific Tcm continuously arise in small numbers but under persistent antigenemia are rapidly induced to differentiate into IFN-γ only–producing cells that lack self-renewal capacity.


Journal of Experimental Medicine | 2008

The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development?

Rafick-Pierre Sekaly

The world of human immunodeficiency virus (HIV) vaccines has suffered a baffling setback. The first trial of a vaccine designed to elicit strong cellular immunity has shown no protection against infection. More alarmingly, the vaccine appeared to increase the rate of HIV infection in individuals with prior immunity against the adenovirus vector used in the vaccine. A new study in this issue suggests that a different vaccine approach—using a DNA prime/poxvirus boost strategy—induces polyfunctional immune responses to an HIV immunogen. The disappointing results of the recent vaccine trial suggest that a more thorough assessment of vaccine-induced immune responses is urgently needed, and that more emphasis should be placed on primate models before efficacy trials are undertaken.


Journal of Virology | 2002

Persistence and Fitness of Multidrug-Resistant Human Immunodeficiency Virus Type 1 Acquired in Primary Infection

Bluma G. Brenner; Jean-Pierre Routy; Marco Petrella; Daniela Moisi; Maureen Oliveira; Mervi Detorio; Bonnie Spira; Vidal Essabag; Brian Conway; Richard Lalonde; Rafick-Pierre Sekaly; Mark A. Wainberg

ABSTRACT This study examines the persistence and fitness of multidrug-resistant (MDR) viruses acquired during primary human immunodeficiency virus infection (PHI). In four individuals, MDR infections persisted over the entire study period, ranging from 36 weeks to 5 years, in the absence of antiretroviral therapy. In stark contrast, identified source partners in two cases showed expected outgrowth of wild-type (WT) virus within 12 weeks of treatment interruption. In the first PHI case, triple-class MDR resulted in low plasma viremia (1.6 to 3 log copies/ml) over time compared with mean values obtained for an untreated PHI group harboring WT infections (4.1 to 4.3 log copies/ml). Increasing viremia in PHI patient 1 at week 52 was associated with the de novo emergence of a protease inhibitor-resistant variant through a recombination event involving the original MDR virus. MDR infections in two other untreated PHI patients yielded viremia levels typical of the untreated WT group. A fourth patients MDR infection yielded low viremia (<50 to 500 copies/ml) for 5 years despite his having phenotypic resistance to all antiretroviral drugs in his treatment regimen. In two of these PHI cases, a rebound to higher levels of plasma viremia only occurred when the M184V mutation in reverse transcriptase could no longer be detected and, in a third case, nondetection of M184V was associated with an inability to isolate virus. To further evaluate the fitness of MDR variants acquired in PHI, MDR and corresponding WT viruses were isolated from index and source partners, respectively. Although MDR viral infectivity (50% tissue culture infective dose) was comparable to that observed for WT viruses, MDR infections in each case demonstrated 2-fold and 13- to 23-fold reductions in p24 antigen and reverse transcriptase enzymatic activity, respectively. In dual-infection competition assays, MDR viruses consistently demonstrated a marked replicative disadvantage compared with WT virus. These results indicate that MDR viruses that are generated following PHI can establish persistent infections as dominant quasispecies despite their impaired replicative competence.


PLOS Pathogens | 2014

Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy

Julian Elliott; Fiona Wightman; Ajantha Solomon; Khader Ghneim; Jeffrey D. Ahlers; Mark J. Cameron; Miranda Z. Smith; Tim Spelman; James H. McMahon; Pushparaj Velayudham; Gregor J. Brown; Janine Roney; Jo Watson; Miles Prince; Jennifer Hoy; Nicolas Chomont; Rémi Fromentin; Francesco A. Procopio; Joumana Zeidan; Sarah Palmer; Lina Odevall; Ricky W. Johnstone; Ben P. Martin; Elizabeth Sinclair; Steven G. Deeks; Daria J. Hazuda; Paul U. Cameron; Rafick-Pierre Sekaly; Sharon R. Lewin

Human immunodeficiency virus (HIV) persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs) are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi) may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART). The primary endpoint was change in cell associated unspliced (CA-US) HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065). Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90%) with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1). CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells. Trial Registration ClinicalTrials.gov NCT01365065


Journal of Virology | 2009

Human Immunodeficiency Virus Type 1-Specific CD8+ T-Cell Responses during Primary Infection Are Major Determinants of the Viral Set Point and Loss of CD4+ T Cells

Hendrik Streeck; Jonathan S. Jolin; Ying Qi; Bader Yassine-Diab; Randall C. Johnson; Douglas S. Kwon; Marylyn M. Addo; Chanson J. Brumme; Jean-Pierre Routy; Susan J. Little; Heiko Jessen; Anthony D. Kelleher; Frederick Hecht; Rafick-Pierre Sekaly; Eric S. Rosenberg; Bruce D. Walker; Mary Carrington; Marcus Altfeld

ABSTRACT Primary HIV-1 infection (PHI) is marked by a flu-like syndrome and high levels of viremia that decrease to a viral set point with the first emergence of virus-specific CD8+ T-cell responses. Here, we investigated in a large cohort of 527 subjects the immunodominance pattern of the first virus-specific cytotoxic T-lymphocyte (CTL) responses developed during PHI in comparison to CTL responses in chronic infection and demonstrated a distinct relationship between the early virus-specific CTL responses and the viral set point, as well as the slope of CD4+ T-cell decline. CTL responses during PHI followed clear hierarchical immunodominance patterns that were lost during the transition to chronic infection. Importantly, the immunodominance patterns of human immunodeficiency virus type 1 (HIV-1)-specific CTL responses detected in primary, but not in chronic, HIV-1 infection were significantly associated with the subsequent set point of viral replication. Moreover, the preservation of the initial CD8+ T-cell immunodominance patterns from the acute into the chronic phase of infection was significantly associated with slower CD4+ T-cell decline. Taken together, these data show that the specificity of the initial CTL response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton

Paul U. Cameron; Suha Saleh; Georgina Sallmann; Ajantha Solomon; Fiona Wightman; Vanessa A. Evans; Geneviève Boucher; Elias K. Haddad; Rafick-Pierre Sekaly; Andrew N. Harman; Jenny L. Anderson; Kate L. Jones; Johnson Mak; Anthony L. Cunningham; Anthony Jaworowski; Sharon R. Lewin

Eradication of HIV-1 with highly active antiretroviral therapy (HAART) is not possible due to the persistence of long-lived, latently infected resting memory CD4+ T cells. We now show that HIV-1 latency can be established in resting CD4+ T cells infected with HIV-1 after exposure to ligands for CCR7 (CCL19), CXCR3 (CXCL9 and CXCL10), and CCR6 (CCL20) but not in unactivated CD4+ T cells. The mechanism did not involve cell activation or significant changes in gene expression, but was associated with rapid dephosphorylation of cofilin and changes in filamentous actin. Incubation with chemokine before infection led to efficient HIV-1 nuclear localization and integration and this was inhibited by the actin stabilizer jasplakinolide. We propose a unique pathway for establishment of latency by direct HIV-1 infection of resting CD4+ T cells during normal chemokine-directed recirculation of CD4+ T cells between blood and tissue.


Journal of Virology | 2007

Recognition of a Defined Region within p24 Gag by CD8+ T Cells during Primary Human Immunodeficiency Virus Type 1 Infection in Individuals Expressing Protective HLA Class I Alleles

Hendrik Streeck; Mathias Lichterfeld; Galit Alter; Angela Meier; Nickolas Teigen; Bader Yassine-Diab; Harlyn K. Sidhu; Susan J. Little; Anthony D. Kelleher; Jean-Pierre Routy; Eric S. Rosenberg; Rafick-Pierre Sekaly; Bruce D. Walker; Marcus Altfeld

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-specific immune responses during primary HIV-1 infection appear to play a critical role in determining the ultimate speed of disease progression, but little is known about the specificity of the initial HIV-1-specific CD8+ T-cell responses in individuals expressing protective HLA class I alleles. Here we compared HIV-1-specific T-cell responses between subjects expressing the protective allele HLA-B27 or -B57 and subjects expressing nonprotective HLA alleles using a cohort of over 290 subjects identified during primary HIV-1 infection. CD8+ T cells of individuals expressing HLA-B27 or -B57 targeted a defined region within HIV-1 p24 Gag (amino acids 240 to 272) early in infection, and responses against this region contributed over 35% to the total HIV-1-specific T-cell responses in these individuals. In contrast, this region was rarely recognized in individuals expressing HLA-B35, an HLA allele associated with rapid disease progression, or in subjects expressing neither HLA-B57/B27 nor HLA-B35 (P < 0.0001). The identification of this highly conserved region in p24 Gag targeted in primary infection specifically in individuals expressing HLA class I alleles associated with slower HIV-1 disease progression provides a rationale for vaccine design aimed at inducing responses to this region restricted by other, more common HLA class I alleles.


Cell | 1991

Mutational analysis of the interaction between CD4 and class II MHC: Class II antigens contact CD4 on a surface opposite the gp120-binding site

S. Fleury; D. Lamarre; S. Meloche; Seong Eon Ryu; C. Cantin; Wayne A. Hendrickson; Rafick-Pierre Sekaly

Using functional and adhesion assays, we have studied the ability of 30 human CD4 mutants to interact with class II major histocompatibility complex (MHC) molecules and also with gp120 from human immunodeficiency virus. The mutants cover the four domains (D1-D4) of CD4 and include several single-site substitutions. Analysis of the results, in the context of the CD4 crystal structure, shows that mutations that affect the interaction with class II MHC molecules are located on three exposed loops from CD4 domains 1 and 2. The specifically implicated residues, 19, 89, and 165, are separated from one another by 9 A, 24 A, and 24 A on one face of the CD4 molecule. Moreover, the class II binding site does not include residues 43 to 49 of the CD4 molecule, a region on an opposite face known to be involved in the binding of gp120.


The EMBO Journal | 2001

Direct cleavage of the human DNA fragmentation factor‐45 by granzyme B induces caspase‐activated DNase release and DNA fragmentation

Ehsan Sharif‐Askari; Antoine Alam; Eric Rhéaume; Paul J. Beresford; Christian Scotto; Kamal Sharma; Dennis Lee; Walter E. DeWolf; Mark E. Nuttall; Judy Lieberman; Rafick-Pierre Sekaly

The protease granzyme B (GrB) plays a key role in the cytocidal activity during cytotoxic T lymphocyte (CTL)‐mediated programmed cell death. Multiple caspases have been identified as direct substrates for GrB, suggesting that the activation of caspases constitutes an important event during CTL‐induced cell death. However, recent studies have provided evidence for caspase‐independent pathway(s) during CTL‐mediated apoptosis. In this study, we demonstrate caspase‐independent and direct cleavage of the 45 kDa unit of DNA fragmentation factor (DFF45) by GrB both in vitro and in vivo. Using a novel and selective caspase‐3 inhibitor, we show the ability of GrB to process DFF45 directly and mediate DNA fragmentation in the absence of caspase‐3 activity. Furthermore, studies with DFF45 mutants reveal that both caspase‐3 and GrB share a common cleavage site, which is necessary and sufficient to induce DNA fragmentation in target cells during apoptosis. Together, our data suggest that CTLs possess alternative mechanism(s) for inducing DNA fragmentation without the requirement for caspases.


Journal of Experimental Medicine | 2015

Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow

Jaeyop Lee; Gaëlle Breton; Thiago Yukio Kikuchi Oliveira; Yu Jerry Zhou; Arafat Aljoufi; Sarah Puhr; Mark J. Cameron; Rafick-Pierre Sekaly; Michel C. Nussenzweig; Kang Liu

Liu, Nussenzweig, and colleagues track the differentiation of human progenitor cells into dendritic cells (DCs). They show that a granulocyte/monocyte/DC progenitor gives rise to a monocyte-DC progenitor that in turn gives rise to both monocytes and a common DC progenitor. The common DC progenitor produces the three major subsets of human DCs.

Collaboration


Dive into the Rafick-Pierre Sekaly's collaboration.

Top Co-Authors

Avatar

Jean-Pierre Routy

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Cameron

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed El-Far

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge