Ragav Venkatesan
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ragav Venkatesan.
international conference of the ieee engineering in medicine and biology society | 2012
Ragav Venkatesan; Parag Shridhar Chandakkar; Baoxin Li; Helen K. Li
All people with diabetes have the risk of developing diabetic retinopathy (DR), a vision-threatening complication. Early detection and timely treatment can reduce the occurrence of blindness due to DR. Computer-aided diagnosis has the potential benefit of improving the accuracy and speed in DR detection. This study is concerned with automatic classification of images with microaneurysm (MA) and neovascularization (NV), two important DR clinical findings. Together with normal images, this presents a 3-class classification problem. We propose a modified color auto-correlogram feature (AutoCC) with low dimensionality that is spectrally tuned towards DR images. Recognizing the fact that the images with or without MA or NV are generally different only in small, localized regions, we propose to employ a multi-class, multiple-instance learning framework for performing the classification task using the proposed feature. Extensive experiments including comparison with a few state-of-art image classification approaches have been performed and the results suggest that the proposed approach is promising as it outperforms other methods by a large margin.
Proceedings of SPIE | 2013
Parag Shridhar Chandakkar; Ragav Venkatesan; Baoxin Li
Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.
international conference on image processing | 2012
Ragav Venkatesan; Christine M. Zwart; David H. Frakes
Video deinterlacing is a key technique in digital video processing, particularly with the widespread usage of LCD and plasma TVs. This paper proposes a novel spatio-temporal video deinterlacing technique that adaptively chooses between results from segment adaptive gradient angle interpolation (SAGA), vertical temporal filter (VTF) and temporal line averaging (LA). The proposed method performs better than several popular benchmarking methods in terms of both visual quality and PSNR and requires minimal computational overhead. The algorithm performs better than existing approaches on fine moving edges and semi-static regions of videos, which are recognized as particularly challenging deinterlacing cases.
Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine | 2012
Parag Shridhar Chandakkar; Ragav Venkatesan; Baoxin Li; Helen K. Li
Diabetic retinopathy (DR) is a vision-threatening complication that affects people suffering from diabetes. Diagnosis of DR during early stages can significantly reduce the risk of severe vision loss. The process of DR severity grading is prone to human error and it also depends on the expertise of the ophthalmologist. As a result, many researchers have started exploring automated detection and evaluation of diabetic retinal lesions. Unfortunately, to date there is no automated system that can perform DR lesion detection with the accuracy that is comparable to a human expert. In this poster, we present a novel way of employing content-based image retrieval for providing a clinician with instant reference to archival and standardized DR images that are used for assisting the ophthalmologist with the diagnosis of a given DR image. The focus of the poster is on retrieving DR images with two significant DR clinical findings, namely, microaneurysm (MA) and neovascularization (NV). We propose a multi-class multiple-instance DR image retrieval framework that makes use of a modified color correlogram (CC) and statistics of steerable Gaussian filter (SGF) responses. Experiments using real DR images with comparisons to other prior-art methods demonstrate the improved performance of the proposed approach.
Journal of Electronic Imaging | 2012
Christine M. Zwart; Ragav Venkatesan; David H. Frakes
Abstract. Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.
Journal of medical imaging | 2017
Parag Shridhar Chandakkar; Ragav Venkatesan; Baoxin Li
Abstract. Diabetic retinopathy (DR) is a consequence of diabetes and is the leading cause of blindness among 18- to 65-year-old adults. Regular screening is critical to early detection and treatment of DR. Computer-aided diagnosis has the potential of improving the practice in DR screening or diagnosis. An automated and unsupervised approach for retrieving clinically relevant images from a set of previously diagnosed fundus camera images for improving the efficiency of screening and diagnosis of DR is presented. Considering that DR lesions are often localized, we propose a multiclass multiple-instance framework for the retrieval task. Considering the special visual properties of DR images, we develop a feature space of a modified color correlogram appended with statistics of steerable Gaussian filter responses selected by fast radial symmetric transform points. Experiments with real DR images collected from five different datasets demonstrate that the proposed approach is able to outperform existing methods.
international conference on image processing | 2016
Ragav Venkatesan; Vijetha Gatupalli; Baoxin Li
Often the filters learned by Convolutional Neural Networks (CNNs) from different datasets appear similar. This is prominent in the first few layers. This similarity of filters is being exploited for the purposes of transfer learning and some studies have been made to analyse such transferability of features. This is also being used as an initialization technique for different tasks in the same dataset or for the same task in similar datasets. Off-the-shelf CNN features have capitalized on this idea to promote their networks as best transferable and most general and are used in a cavalier manner in day-to-day computer vision tasks. It is curious that while the filters learned by these CNNs are related to the atomic structures of the images from which they are learnt, all datasets learn similar looking low-level filters. With the understanding that a dataset that contains many such atomic structures learn general filters and are therefore useful to initialize other networks with, we propose a way to analyse and quantify generality among datasets from their accuracies on transferred filters. We applied this metric on several popular character recognition, natural image and a medical image dataset, and arrived at some interesting conclusions. On further experimentation we also discovered that particular classes in a dataset themselves are more general than others.Often the filters learned by Convolutional Neural Networks (CNNs) from different image datasets appear similar. This similarity of filters is often exploited for the purposes of transfer learning. This is also being used as an initialization technique for different tasks in the same dataset or for the same task in similar datasets. Off-the-shelf CNN features have capitalized on this idea to promote their networks as best transferable and most general and are used in a cavalier manner in day-to-day computer vision tasks. While the filters learned by these CNNs are related to the atomic structures of the images from which they are learnt, all datasets learn similar looking low-level filters. With the understanding that a dataset that contains many such atomic structures learn general filters and are therefore useful to initialize other networks with, we propose a way to analyse and quantify generality. We applied this metric on several popular character recognition, natural image and a medical image dataset, and arrive at some interesting conclusions. On further experimentation we also discovered that particular classes in a dataset themselves are more general than others.
Journal of Electronic Imaging | 2015
Ragav Venkatesan; Christine M. Zwart; David H. Frakes; Baoxin Li
Abstract. With the advent of progressive format display and broadcast technologies, video deinterlacing has become an important video-processing technique. Numerous approaches exist in the literature to accomplish deinterlacing. While most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies and even dedicated video-processing hardware in display units has allowed higher quality but also more computationally intense deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in video to select different deinterlacing methods for various spatiotemporal regions. We introduce a family of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on peak signal-to-noise ratio, other visual quality metrics, and simple perception-based subjective evaluations conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on the visual performance.
international symposium on visual computing | 2014
Parag Shridhar Chandakkar; Ragav Venkatesan; Baoxin Li
Many urban areas face traffic congestion. Automatic traffic management systems and congestion pricing are getting prominence in recent research. An important stage in such systems is lane prediction and on-road self-positioning. We introduce a novel problem of vehicle self-positioning which involves predicting the number of lanes on the road and localizing the vehicle within those lanes, using the video captured by a dashboard camera. To overcome the disadvantages of most existing low-level vision-based techniques while tackling this complex problem, we formulate a model in which the video is a key observation. The model consists of the number of lanes and vehicle position in those lanes as parameters, hence allowing the use of high-level semantic knowledge. Under this formulation, we employ a lane-width-based model and a maximum-likelihood-estimator making the method tolerant to slight viewing angle variation. The overall approach is tested on real-world videos and is found to be effective.
international conference on computer vision | 2015
Ragav Venkatesan; Parag Shridhar Chandakkar; Baoxin Li