Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raghavendra Baregundi Subbarao is active.

Publication


Featured researches published by Raghavendra Baregundi Subbarao.


Bioscience Reports | 2015

Human mesenchymal stem cells - current trends and future prospective.

Imran Ullah; Raghavendra Baregundi Subbarao; Gyu Jin Rho

Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Whartons jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.


Journal of Cellular Biochemistry | 2016

DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord

Sharath Belame Shivakumar; Dinesh Bharti; Raghavendra Baregundi Subbarao; Si Jung Jang; Ji-Sung Park; Imran Ullah; Ji Kwon Park; June Ho Byun; Bong Wook Park; Gyu Jin Rho

The facile nature of mesenchymal stem cell (MSC) acquisition in relatively large numbers has made Whartons jelly (WJ) tissue an alternative source of MSCs for regenerative medicine. However, freezing of such tissue using dimethyl sulfoxide (DMSO) for future use impedes its clinical utility. In this study, we compared the effect of two different cryoprotectants (DMSO and cocktail solution) on post‐thaw cell behavior upon freezing of WJ tissue following two different freezing protocols (Conventional [−1°C/min] and programmed). The programmed method showed higher cell survival rate compared to conventional method of freezing. Further, cocktail solution showed better cryoprotection than DMSO. Post‐thaw growth characteristics and stem cell behavior of Whartons jelly mesenchymal stem cells (WJMSCs) from WJ tissue cryopreserved with a cocktail solution in conjunction with programmed method (Prog‐Cock) were comparable with WJMSCs from fresh WJ tissue. They preserved their expression of surface markers, pluripotent factors, and successfully differentiated in vitro into osteocytes, adipocytes, chondrocytes, and hepatocytes. They also produced lesser annexin‐V‐positive cells compared to cells from WJ tissue stored using cocktail solution in conjunction with the conventional method (Conv‐Cock). Real‐time PCR and Western blot analysis of post‐thaw WJMSCs from Conv‐Cock group showed significantly increased expression of pro‐apoptotic factors (BAX, p53, and p21) and reduced expression of anti‐apoptotic factor (BCL2) compared to WJMSCs from the fresh and Prog‐Cock group. Therefore, we conclude that freezing of fresh WJ tissue using cocktail solution in conjunction with programmed freezing method allows for an efficient WJ tissue banking for future MSC‐based regenerative therapies. J. Cell. Biochem. 117: 2397–2412, 2016.


Stem Cells International | 2016

Comparison of Immunomodulation Properties of Porcine Mesenchymal Stromal/Stem Cells Derived from the Bone Marrow, Adipose Tissue, and Dermal Skin Tissue

Sun-A Ock; Raghavendra Baregundi Subbarao; Yeon-Mi Lee; Jeong-Hyeon Lee; Ryoung-Hoon Jeon; Sung-Lim Lee; Ji Kwon Park; Sun-Chul Hwang; Gyu-Jin Rho

Mesenchymal stromal/stem cells (MSCs) demonstrate immunomodulation capacity that has been implicated in the reduction of graft-versus-host disease. Accordingly, we herein investigated the capacity of MSCs derived from several tissue sources to modulate both proinflammatory (interferon [IFN] γ and tumor necrosis factor [TNF] α) and immunosuppressive cytokines (transforming growth factor [TGF] β and interleukin [IL] 10) employing xenogeneic human MSC-mixed lymphocyte reaction (MLR) test. Bone marrow-derived MSCs showed higher self-renewal capacity with relatively slow proliferation rate in contrast to adipose-derived MSCs which displayed higher proliferation rate. Except for the lipoprotein gene, there were no marked changes in osteogenesis- and adipogenesis-related genes following in vitro differentiation; however, the histological marker analysis revealed that adipose MSCs could be differentiated into both adipose and bone tissue. TGFβ and IL10 were detected in adipose MSCs and bone marrow MSCs, respectively. However, skin-derived MSCs expressed both IFNγ and IL10, which may render them sensitive to immunomodulation. The xenogeneic human MLR test revealed that MSCs had a partial immunomodulation capacity, as proliferation of activated and resting peripheral blood mononuclear cells was not affected, but this did not differ among MSC sources. MSCs were not tumorigenic when introduced into immunodeficient mice. We concluded that the characteristics of MSCs are tissue source-dependent and their in vivo application requires more in-depth investigation regarding their precise immunomodulation capacities.


Life Sciences | 2016

In vitro comparative analysis of human dental stem cells from a single donor and its neuronal differentiation potential evaluated by electrophysiology.

Imran Ullah; Raghavendra Baregundi Subbarao; Eun-Jin Kim; Dinesh Bharti; Si-Jung Jang; Ji-Sung Park; Sharath Belame Shivakumar; Sung-Lim Lee; Dawon Kang; June-Ho Byun; Bong-Wook Park; Gyu-Jin Rho

AIMS The aim of this study was to find out a mesenchymal stem cells (MSCs) source from human dental tissues of the same donor (follicle, papilla and pulp), which exhibits higher neurogenic differentiation potential in vitro. MAIN METHODS MSCs were isolated from dental tissues (follicle, papilla and pulp) by digestion method. All MSCs were analyzed for pluripotent makers by western blot, cell surface markers by flow cytometry, adipo- and osteocytes markers by RT-qPCR. The neuronal differentiated MSCs were characterized for neuronal specific markers by RT-qPCR and immunofluorescence. Functional neuronal properties were analyzed by electrophysiology and synaptic markers expression. KEY FINDINGS All MSCs expressed pluripotent markers (Oct4, Sox2 and Nanog) and were found positive for mesenymal markers (CD44, CD90, CD105) while negative for hematopoietic markers (CD34 and CD45). Furthermore, MSCs were successfully differentiated into adipocytes, osteocytes and trans-differentiated into neuronal cells. Among them, dental pulp derived MSCs exhibits higher neurogenic differentiation potential, in term of expression of neuronal specific markers at both gene and protein level, and having higher Na(+) and K(+) current with the expression of synaptic markers. SIGNIFICANCE The three types of dental MSCs from a single donor broadly possessed similar cellular properties and can differentiate into neuronal cells; however, pulp derived MSCs showed higher neurogenic potential than the follicle and papilla, suggesting their use in future stem cells therapy for the treatment of neurodegenerative disorders.


International Journal of Molecular Sciences | 2015

Characterization and Evaluation of Neuronal Trans-Differentiation with Electrophysiological Properties of Mesenchymal Stem Cells Isolated from Porcine Endometrium

Raghavendra Baregundi Subbarao; Imran Ullah; Eun-Jin Kim; Si-Jung Jang; Won-Jae Lee; Ryoung Hoon Jeon; Dawon Kang; Sung-Lim Lee; Bong-Wook Park; Gyu-Jin Rho

Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of −80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.


Current Stem Cell Research & Therapy | 2016

Research Advancements in Porcine Derived Mesenchymal Stem Cells

Dinesh Bharti; Sharath Belame Shivakumar; Raghavendra Baregundi Subbarao; Gyu-Jin Rho

In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs) before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton’s jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs) have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson’s disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases.


Stem Cells International | 2015

Selection of Reference Genes for Quantitative Gene Expression in Porcine Mesenchymal Stem Cells Derived from Various Sources along with Differentiation into Multilineages.

Won-Jae Lee; Ryoung-Hoon Jeon; Si-Jung Jang; Ji-Sung Park; S.-I. Lee; Raghavendra Baregundi Subbarao; Sung-Lim Lee; Bong-Wook Park; W. A. King; Gyu-Jin Rho

The identification of stable reference genes is a prerequisite for ensuring accurate validation of gene expression, yet too little is known about stable reference genes of porcine MSCs. The present study was, therefore, conducted to assess the stability of reference genes in porcine MSCs derived from bone marrow (BMSCs), adipose (AMSCs), and skin (SMSCs) with their in vitro differentiated cells into mesenchymal lineages such as adipocytes, osteocytes, and chondrocytes. Twelve commonly used reference genes were investigated for their threshold cycle (Ct) values by qRT-PCR. The Ct values of candidate reference genes were analyzed by geNorm software to clarify stable expression regardless of experimental conditions. Thus, Pearsons correlation was applied to determine correlation between the three most stable reference genes (NF3) and optimal number of reference genes (NFopt). In assessment of stability of reference gene across experimental conditions by geNorm analysis, undifferentiated MSCs and each differentiated status into mesenchymal lineages showed slightly different results but similar patterns about more or less stable rankings. Furthermore, Pearsons correlation revealed high correlation (r > 0.9) between NF3 and NFopt. Overall, the present study showed that HMBS, YWHAZ, SDHA, and TBP are suitable reference genes for qRT-PCR in porcine MSCs.


Cell and Tissue Research | 2018

Comparative analysis of human Wharton’s jelly mesenchymal stem cells derived from different parts of the same umbilical cord

Dinesh Bharti; Sharath Belame Shivakumar; Ji-Kwon Park; Imran Ullah; Raghavendra Baregundi Subbarao; Ji-Sung Park; Sung-Lim Lee; Bong-Wook Park; Gyu-Jin Rho

Easy isolation, lack of ethical issues, high proliferation, multi-lineage differentiation potential and immunomodulatory properties of umbilical cord (UC)-derived mesenchymal stem cells (MSCs) make them a valuable tool in stem cell research. Recently, Wharton’s jelly (WJ) was proven as the best MSC source among various compartments of UC. However, it is still unclear whether or not Wharton’s jelly-derived MSCs (WJMSCs) from different parts of the whole cord exhibit the same characteristics. There may be varied MSCs present in different parts of WJ throughout the length of the UC. For this purpose, using an explant attachment method, WJMSCs were isolated from three different parts of the UC, mainly present towards the placenta (mother part), the center of the whole cord (central part) and the part attached to the fetus (baby part). WJMSCs from all three parts were maintained in normal growth conditions (10% ADMEM) and analyzed for mesenchymal markers, pluripotent genes, proliferation rate and tri-lineage differentiation potential. All WJMSCs were highly proliferative, positively expressed CD90, CD105, CD73 and vimentin, while not expressing CD34, CD45, CD14, CD19 or HLA-DR, differentiated into adipocytes, osteocytes and chondrocytes and expressed pluripotency markers OCT-4, SOX-2 and NANOG at gene and protein levels. Furthermore, MSCs derived from all the parts were shown to have potency towards hepatocyte-like cell differentiation. Human bone marrow-derived MSCs were used as a positive control. Finally, we conclude that WJMSCs derived from all the parts are valuable sources and can be efficiently used in various fields of regenerative medicine.


Reproduction, Fertility and Development | 2015

Selection of reference genes for quantitative real-time polymerase chain reaction in porcine embryos

Won-Jae Lee; Si-Jung Jang; S.-I. Lee; Ji-Sung Park; Ryoung-Hoon Jeon; Raghavendra Baregundi Subbarao; Dinesh Bharti; Jeong-Kyu Shin; Bong-Wook Park; Gyu-Jin Rho

To study gene expression and to determine distinctive characteristics of embryos produced by different methods, normalisation of the gene(s) of interest against reference gene(s) has commonly been employed. Therefore, the present study aimed to assess which reference genes tend to express more stably in single porcine blastocysts produced in vivo (IVO) or by parthenogenetic activation (PA), in vitro fertilisation (IVF) and somatic cell nuclear transfer (SCNT) using different analysis programs, namely geNorm, Normfinder and Bestkeeper. Commonly used reference genes including 18S rRNA (18S), H2A histone family, member Z (H2A), hypoxanthine phosphoribosyltransferase1 (HPRT1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein 4 (RPL4), peptidylprolyl isomerase A (PPIA), beta actin (ACTB), succinate dehydrogenase complex, subunit A (SDHA) and hydroxymethylbilane synthase (HMBS2) were analysed; most of them resulted in significantly (P<0.05) different cycle threshold (CT) values in porcine embryos except for SDHA and H2A. In evaluation of stable reference genes across in vivo and in vitro porcine blastocysts, three kinds of programs showed slightly different results; however, there were similar patterns about the rankings of more or less stability overall. In conclusion, SDHA and H2A were determined as the most appropriate reference genes for reliable normalisation in order to find the comparative gene expression in porcine blastocysts produced by different methods, whereas 18S was regarded as a less-stable reference gene. The present study has evaluated the stability of commonly used reference genes for accurate normalisation in porcine embryos to obtain reliable results.


Animal Cells and Systems | 2015

Differentiation potential of mesenchymal stem cells isolated from human dental tissues into non-mesodermal lineage

Byeong-Gyun Jeon; Si-Jeong Jang; Ji-Seong Park; Raghavendra Baregundi Subbarao; Gie-Joon Jeong; Bong-Wook Park; Gyu-Jin Rho

Mesenchymal stem cells (MSCs) possess the ability to differentiate into non-mesodermal lineage, and examining their multi-potency will be beneficial for application in regenerative medicine. The present study investigated the differentiation capacity into neuronal cells of ectodermal lineage and pancreatic cells of endodermal lineage in each of MSC lines isolated from three samples of human dental papilla tissues (DPSCs). Isolated DPSC lines expressed CD13, CD44, CD73, CD90 and CD105 cell surface markers, and OCT-4, NANOG and SOX-2 transcription factors. Further, all DPSC lines differentiated into osteocytes, adipocytes and chondrocytes of mesodermal lineage, whereas telomerase activity was at a low level in all isolated DPSC lines. Following induction into neuronal cells of ectodermal lineage, the neuron-like morphological alterations and expression of neuro-filament M by immunocytochemical staining was observed in all types of DPSCs, and expression of neuronal cell-specific transcripts, NSE, MAP-2, and NESTIN was further confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Moreover, following induction into pancreatic cells of endodermal lineage, all DPSC lines exhibited morphological alterations with DTZ-positive spheroid clusters, and expression of pancreatic cell-specific transcripts, INSULIN, PDX-1, and GLUT-2, was positively detected by RT-PCR. However, some of these clusters were negatively reacted with DTZ staining. The present results demonstrated that DPSCs exhibit differentiation capacity into neuronal and pancreatic cells of non-mesodermal lineage, and DPSCs could be an alternative source of MSCs for clinical applications.

Collaboration


Dive into the Raghavendra Baregundi Subbarao's collaboration.

Top Co-Authors

Avatar

Bong-Wook Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Imran Ullah

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sung-Lim Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Dinesh Bharti

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Gyu-Jin Rho

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Sung Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Si-Jung Jang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Gyu-Jin Rho

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Dawon Kang

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge