Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ragini Vittal is active.

Publication


Featured researches published by Ragini Vittal.


Nature Medicine | 2009

NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury

Louise Hecker; Ragini Vittal; Tamara R. Jones; Rajesh Jagirdar; Tracy R. Luckhardt; Jeffrey C. Horowitz; Subramaniam Pennathur; Fernando J. Martinez; Victor J. Thannickal

Members of the NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to reactive oxygen species, have increased in number during eukaryotic evolution. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants. The prototypical member of this family, NOX-2 (gp91phox), is expressed in phagocytic cells and mediates microbicidal activities. Here we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX-4 expression in lung mesenchymal cells via SMAD-3, a receptor-regulated protein that modulates gene transcription. NOX-4–dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1–induced myofibroblast differentiation, extracellular matrix (ECM) production and contractility. NOX-4 is upregulated in lungs of mice subjected to noninfectious injury and in cases of human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX-4 abrogates fibrogenesis in two murine models of lung injury. These studies support a function for NOX4 in tissue fibrogenesis and provide proof of concept for therapeutic targeting of NOX-4 in recalcitrant fibrotic disorders.


American Journal of Transplantation | 2011

Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation.

Lin Fan; Heather L. Benson; Ragini Vittal; Elizabeth A. Mickler; Robert G. Presson; A. Jo Fisher; Oscar W. Cummings; Kathleen M. Heidler; Melissa R. Keller; William J. Burlingham; David S. Wilkes

Obliterative bronchiolitis (OB) is the key impediment to the long‐term survival of lung transplant recipients and the lack of a robust preclinical model precludes examining OB immunopathogenesis. In the current study, lungs from C57BL/10 H‐2b mice that are MHC compatible, but minor histocompatability antigen incompatible, were transplanted into C57BL/6 mice. Histological features and cytokine profiles of OB were assessed. Moderate rejection (grade A3) developed by day 14, with evidence of OB at that time point. At 21 days, OB was present in 55% of grafts and moderate to severe rejection (grade A3‐A4) was present in all mice. At 28 days, OB was present in 44% of mice and severe rejection (grade A4) was present in all. IL‐17A, but not IL‐17F, splenic mRNA transcripts and serum protein levels were increased only in mice that developed OB, whereas IL‐10 transcripts and protein were increased only in non‐OB mice. Neutralizing IL‐17 prevented OB, down regulated acute rejection, and upregulated systemic IL‐10. Collectively, these data show that transplantation of minor histoincompatible lungs from C57BL/10 mice into C57BL/6 mice results in a highly reproducible preclinical model of OB. In addition, these data indicate that neutralizing IL‐17A or augmenting IL‐10 could be therapeutic interventions to prevent OB.


American Journal of Pathology | 2005

Modulation of Prosurvival Signaling in Fibroblasts by a Protein Kinase Inhibitor Protects against Fibrotic Tissue Injury

Ragini Vittal; Jeffrey C. Horowitz; Bethany B. Moore; Hengmin Zhang; Fernando J. Martinez; Galen B. Toews; Theodore J. Standiford; Victor J. Thannickal

Progressive fibrotic diseases involving diverse organ systems are associated with the persistence of fibroblasts/myofibroblasts in injured tissues. Activation of focal adhesion kinase (FAK) and protein kinase B (PKB/Akt) by transforming growth factor-beta1 mediate stable induction of myofibroblast differentiation and survival. In this report, we demonstrate that transforming growth factor-beta1-induced activation of both PKB/Akt and FAK are dose dependently inhibited by the protein kinase inhibitor, AG1879, in cultured human lung fibroblasts. In a murine model of intratracheal bleomycin-induced lung fibrosis, regions of active fibrogenesis demonstrate elevated expression of PKB/Akt and FAK phosphorylation in vivo, effects that are attenuated in mice receiving daily intraperitoneal injections of AG1879 (bleomycin-AG1879) versus a chemically inactive analog (bleomycin-control). PKB/Akt and FAK phosphorylation are elevated in fibroblasts isolated from lungs of bleomycin-injured mice, effects that are inhibited in bleomycin-AG1879 mice. Accumulation of alpha-smooth muscle actin-expressing myofibroblasts is markedly reduced in lungs of bleomycin-AG1879 mice. The numbers of recruited inflammatory cells were not significantly different between these groups. Bleomycin-AG1879 mice are protected from lung fibrosis as evidenced by histopathology, trichrome staining, and biochemical analysis for collagen. Thus, targeting of prosurvival signaling pathways in fibroblasts/myofibroblasts may provide a novel and effective strategy for anti-fibrotic therapy of treatment-unresponsive fibrotic disorders.


Journal of Pharmacology and Experimental Therapeutics | 2007

Effects of the Protein Kinase Inhibitor, Imatinib Mesylate, on Epithelial/Mesenchymal Phenotypes: Implications for Treatment of Fibrotic Diseases

Ragini Vittal; Hengmin Zhang; MeiLan K. Han; Bethany B. Moore; Jeffrey C. Horowitz; Victor J. Thannickal

Tissue injury in mammals triggers both inflammatory and repair responses that, in some contexts, results in fibrosis. Fibrosis is characterized by the persistence of activated myofibroblasts, ineffective re-epithelialization, and variable degrees of inflammation within injured tissues. The protein kinase inhibitor (PKI), imatinib mesylate, has been proposed as a potential antifibrotic therapeutic agent. In this study, the efficacy of imatinib mesylate to modulate fibrogenic responses, both in vitro and in vivo, was examined. In an in vitro fibroblast culture model, imatinib inhibits platelet-derived growth factor receptor activation and fibroblast proliferation but not the stably differentiated myofibroblast phenotype. Furthermore, imatinib inhibits lung epithelial cell proliferation and survival but not the induction of epithelial-mesenchymal transition. Imatinib does not alter transforming growth factor-β/SMAD3 signaling in either cell type. In a murine model of lung fibrosis, bleomycin-induced injury to the pulmonary epithelium provokes an early inflammatory response with more delayed fibrosis during the late reparative phase of lung injury. Imatinib mesylate (10 mg/kg/day by i.p. injection or oral gavage), administered during the postinjury repair phase, failed to significantly alter fibrogenic responses assessed by histopathology, collagen content, and the accumulation of myofibroblasts within the injured lung. These studies indicate that the capacity of a PKI to inhibit fibroblast proliferation may be insufficient to mediate significant antifibrotic effects in late stages of tissue injury repair. Pharmacologic agents that modulate the activities and fate of differentiated (myo)fibroblasts, without interfering with the regenerative capacity of epithelial cells, are likely to be more effective for treatment of nonresolving, progressive fibrotic disorders.


American Journal of Respiratory and Critical Care Medicine | 2009

Insulin-like Growth Factor-I Receptor Blockade Improves Outcome in Mouse Model of Lung Injury

Jung Eun Choi; Sung soon Lee; Donald A. Sunde; Isham Huizar; Kathy Haugk; Victor J. Thannickal; Ragini Vittal; Stephen R. Plymate; Lynn M. Schnapp

RATIONALE The insulin-like growth factor-I (IGF-I) pathway is an important determinant of survival and proliferation in many cells. However, little is known about the role of the IGF-I pathway in lung injury. We previously showed elevated levels of IGF-I in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome. Furthermore, immunodepletion of IGF from acute respiratory distress syndrome bronchoalveolar lavage increased fibroblast apoptosis. OBJECTIVES We examined the effect of blockade of type 1 IGF tyrosine kinase receptor (IGF-IR) in a murine model of bleomycin-induced lung injury and fibrosis. METHODS Mice were treated with a monoclonal antibody against the IGF-I receptor (A12) or vehicle after intratracheal bleomycin instillation. MEASUREMENTS AND MAIN RESULTS Mice treated with A12 antibody had significantly improved survival after bleomycin injury compared with control mice. Both groups of mice had a similar degree of fibrosis on days 7 and 14, but by Day 28 the A12-treated group had significantly less fibrosis. Delayed treatment with A12 also resulted in decreased fibrosis. A12-treated mice had significantly decreased apoptotic cells on Day 28 compared with control mice. We confirmed that A12 treatment induced mouse lung fibroblast apoptosis in vitro. In addition, IGF-I increased lung fibroblast migration. The primary pathway activated by IGF-I in lung fibroblasts was the insulin receptor substrate-2/phosphatidylinositol 3-kinase/Akt axis. CONCLUSIONS IGF-I regulated survival and migration of fibrogenic cells in the lung. Blockade of the IGF pathway increased fibroblast apoptosis and subsequent resolution of pulmonary fibrosis. Thus, IGF-IR may be a potential target for treatment of lung injury and fibrosis.


Science Translational Medicine | 2014

The HMGB1-RAGE axis mediates traumatic brain injury–induced pulmonary dysfunction in lung transplantation

Daniel J. Weber; Adam Gracon; Matthew S. Ripsch; Amanda J. Fisher; Bo M. Cheon; Pankita H. Pandya; Ragini Vittal; Maegan L. Capitano; Youngsook Kim; Yohance M. Allette; Amanda A. Riley; Brian P. McCarthy; Paul R. Territo; Gary D. Hutchins; Hal E. Broxmeyer; George E. Sandusky; Fletcher A. White; David S. Wilkes

Traumatic brain injury induces acute lung injury that negatively impacts the physiology of the donor lung before and after lung transplantation. Sounding the Alarm for RAGE Only 20% of lungs are transplantable because traumatic brain injury, a major cause of death in organ doors, may induce acute lung injury. High-mobility group box-1 (HMGB1) release from the injured brain likely contributes to acute lung injury in donors by preferentially interacting with receptor for advanced glycation end products (RAGE) in the lung. Blocking the HMGB1-RAGE axis improves lung function in murine donors with traumatic brain injury and after transplant. In translational studies, lungs sourced from donors with high HMGB1 levels had worse pulmonary function after transplant. Targeting the HMGB1-RAGE axis may increase the number of lungs available for transplantation and improve patient outcomes. Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE-sufficient (wild-type) or RAGE-deficient (RAGE−/−) C57BL/6 mice were subjected to TBI through controlled cortical impact and studied for cardiopulmonary injury. Compared to control animals, TBI induced systemic hypoxia, acute lung injury, pulmonary neutrophilia, and decreased compliance (a measure of the lungs’ ability to expand), all of which were attenuated in RAGE−/− mice. Neutralizing systemic HMGB1 induced by TBI reversed hypoxia and improved lung compliance. Compared to wild-type donors, lungs from RAGE−/− TBI donors did not develop acute lung injury after transplantation. In a study of clinical transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic oxygenation of the donor lung before transplantation and predicted impaired oxygenation after transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by which TBI induces lung dysfunction and that targeting this pathway before transplant may improve recipient outcomes after lung transplantation.


PLOS ONE | 2013

Type V collagen induced tolerance suppresses collagen deposition, TGF-β and associated transcripts in pulmonary fibrosis.

Ragini Vittal; Elizabeth A. Mickler; Amanda J. Fisher; Chen Zhang; Katia Rothhaar; Hongmei Gu; Krista M. Brown; Amir Emtiazdjoo; Jeremy M. Lott; Sarah Frye; Gerald N. Smith; George E. Sandusky; Oscar W. Cummings; David S. Wilkes

Rationale Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease characterized by progressive scarring and matrix deposition. Recent reports highlight an autoimmune component in IPF pathogenesis. We have reported anti-col(V) immunity in IPF patients. The objective of our study was to determine the specificity of col(V) expression profile and anti-col(V) immunity relative to col(I) in clinical IPF and the efficacy of nebulized col(V) in pre-clinical IPF models. Methods Col(V) and col(I) expression profile was analyzed in normal human and IPF tissues. C57-BL6 mice were intratracheally instilled with bleomycin (0.025 U) followed by col(V) nebulization at pre-/post-fibrotic stage and analyzed for systemic and local responses. Results Compared to normal lungs, IPF lungs had higher protein and transcript expression of the alpha 1 chain of col(V) and col(I). Systemic anti-col(V) antibody concentrations, but not of anti-col(I), were higher in IPF patients. Nebulized col(V), but not col(I), prevented bleomycin-induced fibrosis, collagen deposition, and myofibroblast differentiation. Col(V) treatment suppressed systemic levels of anti-col(V) antibodies, IL-6 and TNF-α; and local Il-17a transcripts. Compared to controls, nebulized col(V)-induced tolerance abrogated antigen-specific proliferation in mediastinal lymphocytes and production of IL-17A, IL-6, TNF-α and IFN-γ. In a clinically relevant established fibrosis model, nebulized col(V) decreased collagen deposition. mRNA array revealed downregulation of genes specific to fibrosis (Tgf-β, Il-1β, Pdgfb), matrix (Acta2, Col1a2, Col3a1, Lox, Itgb1/6, Itga2/3) and members of the TGF-β superfamily (Tgfbr1/2, Smad2/3, Ltbp1, Serpine1, Nfkb/Sp1/Cebpb). Conclusions Anti-col(V) immunity is pathogenic in IPF, and col(V)-induced tolerance abrogates bleomycin-induced fibrogenesis and down regulates TGF- β-related signaling pathways.


Journal of Immunology | 2013

Role of Complement Activation in Obliterative Bronchiolitis Post–Lung Transplantation

Hidemi Suzuki; Mark E. Lasbury; Lin Fan; Ragini Vittal; Elizabeth A. Mickler; Heather L. Benson; Rebecca A. Shilling; Qiang Wu; Daniel J. Weber; Sarah R. Wagner; Melissa Lasaro; Denise Devore; Yi Wang; George E. Sandusky; Kelsey Lipking; Pankita H. Pandya; John V. Reynolds; Robert B. Love; Thomas C. Wozniak; Hongmei Gu; Krista M. Brown; David S. Wilkes

Obliterative bronchiolitis (OB) post-lung transplantation involves IL-17–regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB is unknown. The current study examines the role of complement activation in OB. Complement-regulatory protein (CRP) (CD55, CD46, complement receptor 1–related protein y/CD46) expression was downregulated in human and murine OB; and C3a, a marker of complement activation, was upregulated locally. IL-17 differentially suppressed complement receptor 1–related protein y expression in airway epithelial cells in vitro. Neutralizing IL-17 recovered CRP expression in murine lung allografts and decreased local C3a production. Exogenous C3a enhanced IL-17 production from alloantigen- or autoantigen (type V collagen)-reactive lymphocytes. Systemically neutralizing C5 abrogated the development of OB, reduced acute rejection severity, lowered systemic and local levels of C3a and C5a, recovered CRP expression, and diminished systemic IL-17 and IL-6 levels. These data indicated that OB induction is in part complement dependent due to IL-17–mediated downregulation of CRPs on airway epithelium. C3a and IL-17 are part of a feed-forward loop that may enhance CRP downregulation, suggesting that complement blockade could be a therapeutic strategy for OB.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

IL-17 Induces Type V Collagen Overexpression and EMT via TGF-β dependent Pathways in Obliterative Bronchiolitis

Ragini Vittal; Lin Fan; Daniel S. Greenspan; Elizabeth A. Mickler; Bagavathi Gopalakrishnan; Hongmei Gu; Heather L. Benson; Chen Zhang; William J. Burlingham; Oscar W. Cummings; David S. Wilkes

Obliterative bronchiolitis (OB), a fibrotic airway lesion, is the leading cause of death after lung transplantation. Type V collagen [col(V)] overexpression and IL-17-mediated anti-col(V) immunity are key contributors to OB pathogenesis. Here, we report a previously undefined role of IL-17 in inducing col(V) overexpression, leading to epithelial mesenchymal transition (EMT) and subsequent OB. We observed IL-17-mediated induction of col(V) α1 chains [α1 (V)] in normal airway epithelial cells in vitro and detected α1 (V)-specific antibodies in bronchoalveolar lavage fluid of lung transplant patients. Overexpression of IL-17 and col(V) was detected in OB lesions in patient lung biopsies and in a murine OB model. IL-17 is shown to induce EMT, TGF-β mRNA expression, and SMAD3 activation, whereas downregulating SMAD7 expression in vitro. Pharmacological inhibition of TGF-βRI tyrosine kinase, p38 MAPK, or focal adhesion kinase prevented col(V) overexpression and EMT. In murine orthotopic lung transplants, neutralizing IL-17 significantly decreased TGF-β mRNA and protein expression and prevented epithelial repair/OB. Our findings highlight a feed-forward loop between IL-17 and TGF-β, leading to induction of col(V) and associated epithelial repair, thus providing one possible link between autoimmunity and OB after lung transplantation.


American Journal of Respiratory Cell and Molecular Biology | 2013

Peptide-Mediated Inhibition of Mitogen-Activated Protein Kinase–Activated Protein Kinase–2 Ameliorates Bleomycin-Induced Pulmonary Fibrosis

Ragini Vittal; Amanda J. Fisher; Hongmei Gu; Elizabeth A. Mickler; Alyssa Panitch; Cynthia Lander; Oscar W. Cummings; George E. Sandusky; David S. Wilkes

Mitogen-activated protein kinase-activated protein kinase-2 (MAPKAPK2, or MK2), a serine/threonine kinase downstream of p38 mitogen-activated protein kinase, has been implicated in inflammation and fibrosis. Compared with pathologically normal lung tissue, significantly higher concentrations of activated MK2 are evident in lung biopsies of patients with idiopathic pulmonary fibrosis (IPF). Expression is localized to fibroblasts and epithelial cells. In the murine bleomycin model of pulmonary fibrosis, we observed robust, activated MK2 expression on Day 7 (prefibrotic stage) and Day 14 (postfibrotic stage). To determine the effects of MK2 inhibition during the postinflammatory/prefibrotic and postfibrotic stages, C57BL/6 mice received intratracheal bleomycin instillation (0.025 U; Day 0), followed by PBS or the MK2 inhibitor (MK2i; 37.5 μg/kg), administered via either local (nebulized) or systemic (intraperitoneal) routes. MK2i or PBS was dosed daily for 14 days subsequent to bleomycin injury, beginning on either Day 7 or Day 14. Regardless of mode of administration or stage of intervention, MK2i significantly abrogated collagen deposition, myofibroblast differentiation and activated MK2 expression. MK2i also decreased circulating TNF-α and IL-6 concentrations, and modulated the local mRNA expression of profibrotic cytokine il-1β, matrix-related genes col1a2, col3a1, and lox, and transforming growth factor-β family members, including smad3, serpine1 (pai1), and smad6/7. In vitro, MK2i dose-dependently attenuated total MK2, myofibroblast differentiation, the secretion of collagen Type I, fibronectin, and the activation of focal adhesion kinase, whereas activated MK2 was attenuated at optimal doses. The peptide-mediated inhibition of MK2 affects both inflammatory and fibrotic responses, and thus may offer a promising therapeutic target for IPF.

Collaboration


Dive into the Ragini Vittal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor J. Thannickal

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge