Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rahul Karnik is active.

Publication


Featured researches published by Rahul Karnik.


Nature | 2014

DNA methylation dynamics of the human preimplantation embryo.

Zachary D. Smith; Michelle Mei Fung Chan; Kathryn C. Humm; Rahul Karnik; Shila Mekhoubad; Aviv Regev; Kevin Eggan; Alexander Meissner

In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell-type-specific regulation directed by DNA binding factors. This comparatively static landscape is in marked contrast with the events of fertilization, during which the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, although methylation remains detectable at several notable features. These dynamics have been extensively characterized in the mouse, with only limited observations available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of residual maintenance are primarily restricted to gene bodies. Although most features share similar dynamics to those in mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island promoters that extend beyond known imprint control regions. Retrotransposon regulation is also highly diverse, and transitions from maternally to embryonically expressed elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation.


Nature Genetics | 2015

Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells

Jing Liao; Rahul Karnik; Hongcang Gu; Michael J. Ziller; Kendell Clement; Alexander M. Tsankov; Veronika Akopian; Casey A. Gifford; Julie Donaghey; Christina Galonska; Ramona Pop; Deepak Reyon; Shengdar Q. Tsai; William Mallard; J. Keith Joung; John L. Rinn; Andreas Gnirke; Alexander Meissner

DNA methylation is a key epigenetic modification involved in regulating gene expression and maintaining genomic integrity. Here we inactivated all three catalytically active DNA methyltransferases (DNMTs) in human embryonic stem cells (ESCs) using CRISPR/Cas9 genome editing to further investigate the roles and genomic targets of these enzymes. Disruption of DNMT3A or DNMT3B individually as well as of both enzymes in tandem results in viable, pluripotent cell lines with distinct effects on the DNA methylation landscape, as assessed by whole-genome bisulfite sequencing. Surprisingly, in contrast to findings in mouse, deletion of DNMT1 resulted in rapid cell death in human ESCs. To overcome this immediate lethality, we generated a doxycycline-responsive tTA-DNMT1* rescue line and readily obtained homozygous DNMT1-mutant lines. However, doxycycline-mediated repression of exogenous DNMT1* initiates rapid, global loss of DNA methylation, followed by extensive cell death. Our data provide a comprehensive characterization of DNMT-mutant ESCs, including single-base genome-wide maps of the targets of these enzymes.


Cell | 2015

Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency

Davide Cacchiarelli; Cole Trapnell; Michael J. Ziller; Magali Soumillon; Marcella Cesana; Rahul Karnik; Julie Donaghey; Zachary D. Smith; Sutheera Ratanasirintrawoot; Xiaolan Zhang; Shannan J. Ho Sui; Zhaoting Wu; Veronika Akopian; Casey A. Gifford; John G. Doench; John L. Rinn; George Q. Daley; Alexander Meissner; Eric S. Lander; Tarjei S. Mikkelsen

Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here, we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered re-activation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PAPERCLIP.


Nature | 2016

LKB1 loss links serine metabolism to DNA methylation and tumorigenesis

Filippos Kottakis; Brandon N. Nicolay; Ahlima Roumane; Rahul Karnik; Hongcang Gu; Julia M. Nagle; Myriam Boukhali; Michele C. Hayward; Yvonne Y. Li; Ting Chen; Marc Liesa; Peter S. Hammerman; Kwok-Kin Wong; D. Neil Hayes; Orian S. Shirihai; Nicholas J. Dyson; Wilhelm Haas; Alexander Meissner; Nabeel Bardeesy

Intermediary metabolism generates substrates for chromatin modification, enabling the potential coupling of metabolic and epigenetic states. Here we identify a network linking metabolic and epigenetic alterations that is central to oncogenic transformation downstream of the liver kinase B1 (LKB1, also known as STK11) tumour suppressor, an integrator of nutrient availability, metabolism and growth. By developing genetically engineered mouse models and primary pancreatic epithelial cells, and employing transcriptional, proteomics, and metabolic analyses, we find that oncogenic cooperation between LKB1 loss and KRAS activation is fuelled by pronounced mTOR-dependent induction of the serine–glycine–one-carbon pathway coupled to S-adenosylmethionine generation. At the same time, DNA methyltransferases are upregulated, leading to elevation in DNA methylation with particular enrichment at retrotransposon elements associated with their transcriptional silencing. Correspondingly, LKB1 deficiency sensitizes cells and tumours to inhibition of serine biosynthesis and DNA methylation. Thus, we define a hypermetabolic state that incites changes in the epigenetic landscape to support tumorigenic growth of LKB1-mutant cells, while resulting in potential therapeutic vulnerabilities.


Cell Stem Cell | 2013

Browsing (Epi)genomes: a guide to data resources and epigenome browsers for stem cell researchers.

Rahul Karnik; Alexander Meissner

Over the past years we have witnessed an explosion in the generation of freely available genome-wide data sets, including maps of various histone modifications, transcription factor binding, DNase hypersensitivity, and DNA methylation, which provide valuable resources for data validation, exploration, and hypothesis generation. The goal of this review is to provide the reader with information on where to find many of the data sets and how to utilize the various (epi)genome browsers for display and initial analysis. We provide selected examples to highlight key features and demonstrate the application of these browsers to stem cell biology.


Nature Genetics | 2018

Genetic determinants and epigenetic effects of pioneer-factor occupancy

Julie Donaghey; Sudhir Thakurela; Jocelyn Charlton; Jennifer S. Chen; Zachary D. Smith; Hongcang Gu; Ramona Pop; Kendell Clement; Elena K. Stamenova; Rahul Karnik; David R. Kelley; Casey A. Gifford; Davide Cacchiarelli; John L. Rinn; Andreas Gnirke; Michael J. Ziller; Alexander Meissner

Transcription factors (TFs) direct developmental transitions by binding to target DNA sequences, influencing gene expression and establishing complex gene-regultory networks. To systematically determine the molecular components that enable or constrain TF activity, we investigated the genomic occupancy of FOXA2, GATA4 and OCT4 in several cell types. Despite their classification as pioneer factors, all three TFs exhibit cell-type-specific binding, even when supraphysiologically and ectopically expressed. However, FOXA2 and GATA4 can be distinguished by low enrichment at loci that are highly occupied by these factors in alternative cell types. We find that expression of additional cofactors increases enrichment at a subset of these sites. Finally, FOXA2 occupancy and changes to DNA accessibility can occur in G1-arrested cells, but subsequent loss of DNA methylation requires DNA replication.Investigation of FOXA2, GATA4 and OCT4 binding across several cell types provides insights into the genetic determinants and epigenetic effects of pioneer-factor occupancy. The data suggest that FOXA2 samples most of its potential binding sites but is stabilized at only a subset of targets.


mSystems | 2018

Zika Virus Alters DNA Methylation of Neural Genes in an Organoid Model of the Developing Human Brain

Sylvie Janssens; Michael Schotsaert; Rahul Karnik; Vinod R. M. T. Balasubramaniam; Marion Dejosez; Alexander Meissner; Adolfo García-Sastre; Thomas P. Zwaka

Scientific research on human neural stem cells and cerebral organoids has confirmed the congenital neurotropic and neurodestructive nature of the Zika virus. However, the extent to which prenatal ZIKV infection is associated with more subtle brain alterations, such as epigenetic changes, remains ill defined. Here, we address the question of whether ZIKV infection induces DNA methylation changes with the potential to cause brain disorders later in life. ABSTRACT Zika virus (ZIKV) infection during early pregnancy can cause microcephaly and associated defects at birth, but whether it can induce neurologic sequelae that appear later in life remains unclear. Using a model of the developing brain based on embryonic stem cell-derived brain organoids, we studied the impact of ZIKV infection on the DNA methylation pattern across the entire genome in selected neural cell types. The virus unexpectedly alters the DNA methylome of neural progenitors, astrocytes, and differentiated neurons at genes that have been implicated in the pathogenesis of a number of brain disorders, most prominently mental retardation and schizophrenia. Our results suggest that ZIKV infection during fetal development could lead to a spectrum of delayed-onset neuropsychiatric complications. IMPORTANCE Scientific research on human neural stem cells and cerebral organoids has confirmed the congenital neurotropic and neurodestructive nature of the Zika virus. However, the extent to which prenatal ZIKV infection is associated with more subtle brain alterations, such as epigenetic changes, remains ill defined. Here, we address the question of whether ZIKV infection induces DNA methylation changes with the potential to cause brain disorders later in life.


Stem cell reports | 2018

X Chromosome Dosage Influences DNA Methylation Dynamics during Reprogramming to Mouse iPSCs

Vincent Pasque; Rahul Karnik; Constantinos Chronis; Paula Petrella; Justin Langerman; Giancarlo Bonora; Juan Song; Lotte Vanheer; Anupama Sadhu Dimashkie; Alexander Meissner; Kathrin Plath

Summary A dramatic difference in global DNA methylation between male and female cells characterizes mouse embryonic stem cells (ESCs), unlike somatic cells. We analyzed DNA methylation changes during reprogramming of male and female somatic cells and in resulting induced pluripotent stem cells (iPSCs). At an intermediate reprogramming stage, somatic and pluripotency enhancers are targeted for partial methylation and demethylation. Demethylation within pluripotency enhancers often occurs at ESC binding sites of pluripotency transcription factors. Late in reprogramming, global hypomethylation is induced in a female-specific manner. Genome-wide hypomethylation in female cells affects many genomic landmarks, including enhancers and imprint control regions, and accompanies the reactivation of the inactive X chromosome. The loss of one of the two X chromosomes in propagating female iPSCs is associated with genome-wide methylation gain. Collectively, our findings highlight the dynamic regulation of DNA methylation at enhancers during reprogramming and reveal that X chromosome dosage dictates global DNA methylation levels in iPSCs.


Nucleic Acids Research | 2018

Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2

Arumugam Rajavelu; Cristiana Lungu; Max Emperle; Michael Dukatz; Alexander Bröhm; Julian Broche; Ines Hanelt; Edris Parsa; Sarah Schiffers; Rahul Karnik; Alexander Meissner; Thomas Carell; Philipp Rathert; Renata Z. Jurkowska; Albert Jeltsch

Abstract Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A–ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.


Cell Stem Cell | 2014

Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance.

Lev Kats; Markus Reschke; Riccardo Taulli; Olga Pozdnyakova; Kerri Burgess; Parul Bhargava; Kimberly Straley; Rahul Karnik; Alexander Meissner; Donald M. Small; Shinsan M. Su; Katharine E. Yen; Jiangwen Zhang; Pier Paolo Pandolfi

Collaboration


Dive into the Rahul Karnik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aviv Regev

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge