Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rahul Pandit is active.

Publication


Featured researches published by Rahul Pandit.


EPL | 1993

Superfluid and Insulating Phases in an Interacting-Boson Model: Mean-Field Theory and the RPA

K. Sheshadri; H. R. Krishnamurthy; Rahul Pandit; T. V. Ramakrishnan

The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described.


Physical Review Letters | 2008

Hyperviscosity, Galerkin truncation and bottlenecks in turbulence

U. Frisch; Susan Kurien; Rahul Pandit; Walter Pauls; Samriddhi Sankar Ray; Achim Wirth; J.-X. Zhu

It is shown that the use of a high power alpha of the Laplacian in the dissipative term of hydrodynamical equations leads asymptotically to truncated inviscid conservative dynamics with a finite range of spatial Fourier modes. Those at large wave numbers thermalize, whereas modes at small wave numbers obey ordinary viscous dynamics [C. Cichowlas et al., Phys. Rev. Lett. 95, 264502 (2005)10.1103/Phys. Rev. Lett. 95.264502]. The energy bottleneck observed for finite alpha may be interpreted as incomplete thermalization. Artifacts arising from models with alpha>1 are discussed.


Physical Review Letters | 2001

Defibrillation via the Elimination of Spiral Turbulence in a Model for Ventricular Fibrillation

Sitabhra Sinha; Ashwin Pande; Rahul Pandit

Ventricular fibrillation, the major reason behind sudden cardiac death, is turbulent cardiac electrical activity in which rapid, irregular disturbances in the spatiotemporal electrical activation of the heart make it incapable of any concerted pumping action. Methods of controlling ventricular fibrillation include electrical defibrillation as well as injected medication. Electrical defibrillation, though widely used, involves subjecting the whole heart to massive, and often counterproductive, electrical shocks. We propose a defibrillation method that uses a very low-amplitude shock (of order mV) applied for a brief duration (of order 100 ms) and over a coarse mesh of lines on our model ventricle.


PLOS ONE | 2009

Spiral-Wave Turbulence and Its Control in the Presence of Inhomogeneities in Four Mathematical Models of Cardiac Tissue

T. K. Shajahan; Alok Ranjan Nayak; Rahul Pandit

Regular electrical activation waves in cardiac tissue lead to the rhythmic contraction and expansion of the heart that ensures blood supply to the whole body. Irregularities in the propagation of these activation waves can result in cardiac arrhythmias, like ventricular tachycardia (VT) and ventricular fibrillation (VF), which are major causes of death in the industrialised world. Indeed there is growing consensus that spiral or scroll waves of electrical activation in cardiac tissue are associated with VT, whereas, when these waves break to yield spiral- or scroll-wave turbulence, VT develops into life-threatening VF: in the absence of medical intervention, this makes the heart incapable of pumping blood and a patient dies in roughly two-and-a-half minutes after the initiation of VF. Thus studies of spiral- and scroll-wave dynamics in cardiac tissue pose important challenges for in vivo and in vitro experimental studies and for in silico numerical studies of mathematical models for cardiac tissue. A major goal here is to develop low-amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of inhomogeneities that occur commonly in cardiac tissue. We present a detailed and systematic study of spiral- and scroll-wave turbulence and spatiotemporal chaos in four mathematical models for cardiac tissue, namely, the Panfilov, Luo-Rudy phase 1 (LRI), reduced Priebe-Beuckelmann (RPB) models, and the model of ten Tusscher, Noble, Noble, and Panfilov (TNNP). In particular, we use extensive numerical simulations to elucidate the interaction of spiral and scroll waves in these models with conduction and ionic inhomogeneities; we also examine the suppression of spiral- and scroll-wave turbulence by low-amplitude control pulses. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such inhomogeneities. We also study two types of control schemes that have been suggested for the control of spiral turbulence, via low amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control schemes in the presence of inhomogeneities. We find that a local pulsing scheme does not suppress spiral turbulence in the presence of inhomogeneities; but a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation.


PLOS ONE | 2013

Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts

Alok Ranjan Nayak; T. K. Shajahan; Alexander V. Panfilov; Rahul Pandit

Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as [Formula: see text], the fibroblast resting-membrane potential, the fibroblast conductance [Formula: see text], and the MF gap-junctional coupling [Formula: see text]. Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as [Formula: see text], and [Formula: see text], and (c) intercellular couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity [Formula: see text] decreases as a function of [Formula: see text], for zero-sided and one-sided couplings; however, for two-sided coupling, [Formula: see text] decreases initially and then increases as a function of [Formula: see text], and, eventually, we observe that conduction failure occurs for low values of [Formula: see text]. In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling [Formula: see text] or [Formula: see text]. Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities.


Physical Review E | 2007

Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue

T. K. Shajahan; Sitabhra Sinha; Rahul Pandit

Every sixth death in industrialized countries occurs because of cardiac arrhythmias such as ventricular tachycardia (VT) and ventricular fibrillation (VF). There is growing consensus that VT is associated with an unbroken spiral wave of electrical activation on cardiac tissue but VF with broken waves, spiral turbulence, spatiotemporal chaos and rapid, irregular activation. Thus spiral-wave activity in cardiac tissue has been studied extensively. Nevertheless, many aspects of such spiral dynamics remain elusive because of the intrinsically high-dimensional nature of the cardiac-dynamical system. In particular, the role of tissue heterogeneities in the stability of cardiac spiral waves is still being investigated. Experiments with conduction inhomogeneities in cardiac tissue yield a variety of results: some suggest that conduction inhomogeneities can eliminate VF partially or completely, leading to VT or quiescence, but others show that VF is unaffected by obstacles. We propose theoretically that this variety of results is a natural manifestation of a complex, fractal-like boundary that must separate the basins of the attractors associated, respectively, with spiral breakup and single spiral wave. We substantiate this with extensive numerical studies of Panfilov and Luo-Rudy I models, where we show that the suppression of spiral breakup depends sensitively on the position, size, and nature of the inhomogeneity.


PLOS ONE | 2014

A study of early afterdepolarizations in a model for human ventricular tissue

Nele Vandersickel; Ivan V. Kazbanov; Anita Nuitermans; Louis D. Weise; Rahul Pandit; Alexander V. Panfilov

Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium.


Physical Review Letters | 2005

Is Multiscaling an Artifact in the Stochastically Forced Burgers Equation

Dhrubaditya Mitra; Jeremie Bec; Rahul Pandit; U. Frisch

We study turbulence in the one-dimensional Burgers equation with a white-in-time, Gaussian random force that has a Fourier-space spectrum approximately 1/k, where k is the wave number. From very high-resolution numerical simulations, in the limit of vanishing viscosity, we find evidence for multiscaling of velocity structure functions which cannot be falsified by standard tests. We find a new artifact in which logarithmic corrections can appear disguised as anomalous scaling and conclude that bifractal scaling is likely.


Physical Review Letters | 2006

Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence

Prasad Perlekar; Dhrubaditya Mitra; Rahul Pandit

The existence of drag reduction by polymer additives, well established for wall-bounded turbulent flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy, we carry out a high-resolution direct numerical simulation of decaying, homogeneous, isotropic turbulence with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy-dissipation rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.


PLOS ONE | 2012

Nonequilibrium Arrhythmic States and Transitions in a Mathematical Model for Diffuse Fibrosis in Human Cardiac Tissue

Rupamanjari Majumder; Alok Ranjan Nayak; Rahul Pandit

We present a comprehensive numerical study of spiral-and scroll-wave dynamics in a state-of-the-art mathematical model for human ventricular tissue with fiber rotation, transmural heterogeneity, myocytes, and fibroblasts. Our mathematical model introduces fibroblasts randomly, to mimic diffuse fibrosis, in the ten Tusscher-Noble-Noble-Panfilov (TNNP) model for human ventricular tissue; the passive fibroblasts in our model do not exhibit an action potential in the absence of coupling with myocytes; and we allow for a coupling between nearby myocytes and fibroblasts. Our study of a single myocyte-fibroblast (MF) composite, with a single myocyte coupled to fibroblasts via a gap-junctional conductance , reveals five qualitatively different responses for this composite. Our investigations of two-dimensional domains with a random distribution of fibroblasts in a myocyte background reveal that, as the percentage of fibroblasts increases, the conduction velocity of a plane wave decreases until there is conduction failure. If we consider spiral-wave dynamics in such a medium we find, in two dimensions, a variety of nonequilibrium states, temporally periodic, quasiperiodic, chaotic, and quiescent, and an intricate sequence of transitions between them; we also study the analogous sequence of transitions for three-dimensional scroll waves in a three-dimensional version of our mathematical model that includes both fiber rotation and transmural heterogeneity. We thus elucidate random-fibrosis-induced nonequilibrium transitions, which lead to conduction block for spiral waves in two dimensions and scroll waves in three dimensions. We explore possible experimental implications of our mathematical and numerical studies for plane-, spiral-, and scroll-wave dynamics in cardiac tissue with fibrosis.

Collaboration


Dive into the Rahul Pandit's collaboration.

Top Co-Authors

Avatar

Dhrubaditya Mitra

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Anupam Gupta

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Prasad Perlekar

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samriddhi Sankar Ray

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Alok Ranjan Nayak

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nairita Pal

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. D. Gibbon

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge