Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Bader is active.

Publication


Featured researches published by Rainer Bader.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone.

Jan Wieding; Andreas Wolf; Rainer Bader

Treatment of large segmental bone defects, especially in load bearing areas, is a complex procedure in orthopedic surgery. The usage of additive manufacturing processes enables the creation of customized bone implants with arbitrary open-porous structure satisfying both the mechanical and the biological requirements for a sufficient bone ingrowth. Aim of the present numerical study was to optimize the geometrical parameters of open-porous titanium scaffolds to match the elastic properties of human cortical bone with respect to an adequate pore size. Three different scaffold designs (cubic, diagonal and pyramidal) were numerically investigated by using an optimization approach. Beam elements were used to create the lattice structures of the scaffolds. The design parameters strut diameter and pore size ranged from 0.2 to 1.5mm and from 0 to 3.0mm, respectively. In a first optimization step, the geometrical parameters were varied under uniaxial compression to obtain a structural modulus of 15GPa (Young׳s modulus of cortical bone) and a pore size of 800µm was aimed to enable cell ingrowth. Furthermore, the mechanical behavior of the optimized structures under bending and torsion was investigated. Results for bending modulus were between 9.0 and 14.5GPa. In contrast, shear modulus was lowest for cubic and pyramidal design of approximately 1GPa. Here, the diagonal design revealed a modulus of nearly 20GPa. In a second step, large-sized bone scaffolds were created and placed in a biomechanical loading situation within a 30mm segmental femoral defect, stabilized with an osteosynthesis plate and loaded with physiological muscle forces. Strut diameter for the 17 sections of each scaffold was optimized independently in order to match the biomechanical stability of intact bone. For each design, highest strut diameter was found at the dorsal/medial site of the defect and smallest strut diameter in the center. In conclusion, we demonstrated the possibility of providing optimized open-porous scaffolds for bone regeneration by considering both mechanical and biological aspects. Furthermore, the results revealed the need of the investigation and comparison of different load scenarios (compression, bending and torsion) as well as complex biomechanical loading for a profound characterization of different scaffold designs. The usage of a numerical optimization process was proven to be a feasible tool to reduce the amount of the required titanium material without influencing the biomechanical performance of the scaffold negatively. By using fully parameterized models, the optimization approach is adaptable to other scaffold designs and bone defect situations.


Computer Methods and Programs in Biomedicine | 2009

A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: Modeling and experimental validation

Daniel Kluess; Robert Souffrant; Wolfram Mittelmeier; Andreas Wree; Klaus-Peter Schmitz; Rainer Bader

With regard to the growing potential of finite-element-analysis (FEA) in the field of orthopaedic biomechanics, we present an approach helping in the development of appropriate models of the implant-bone compound. The algorithm is based on computed-tomography data of the bone and accordant computer-aided-design (CAD) data of the implant and aims at predicting the bone strains and interface mechanics of the included parts. The developed algorithm was validated exemplary using an acetabular cup in combination with a left and a right fresh-frozen human hemipelvis. The strains under maximum loads during the gait cycle as well as the micromotion in the bone-implant interface were measured and compared to results from equivalent finite-element-analyses. Thereby, we found strong correlation between the calculated and measured principal strains with correlation coefficients of r(2)=0.94 (left side) and r(2)=0.86 (right side). A validation of micromotion was not possible due to limited accuracy of the motion tracking system.


Acta Orthopaedica | 2008

Limited range of motion of hip resurfacing arthroplasty due to unfavorable ratio of prosthetic head size and femoral neck diameter

Daniel Kluess; Carmen Zietz; Tobias Lindner; Wolfram Mittelmeier; Klaus-Peter Schmitz; Rainer Bader

Background and purpose Hip resurfacing arthroplasty is being used more and more frequently. The small ratio in size between the resurfaced femoral head and the relatively thick femoral neck raises the question of whether the range of motion is sufficient, particularly with regard to the high mobility required by younger patients. We analyzed motion in a CAD model. Methods Three-dimensional CAD models of the natural hip were created from CT scans and 8 designs of hip resurfacing prostheses (head diameter between 42 mm and 54 mm combined with a hemispherical cup) were implanted in a virtual sense. We simulated 3 different leg positions and the range of motion was evaluated, considering five different implant positions. Results The range of motion of the hip resurfacing designs analyzed was far below the range of motion of stemmed total hip prostheses. None of the resurfacing prostheses provided flexion movements of 90° without impingement. The average range of motion of hip resurfacing arthroplasty was 31–48° below the range of motion of a stemmed total hip replacement with 32-mm head diameter. Interpretation The range of motion of the hip resurfacing designs examined was substantially less than that of a conventional total hip prosthesis. Since impingement of the femoral neck on the acetabular component increases the risk of neck fractures, of dislocation and of subsequent implant loosening, the design and position of the implant should be considered before using hip resurfacing arthroplasty as a standard treatment for younger patients.


International Journal of Molecular Medicine | 2011

The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles

Katrin Lochner; Andreas Fritsche; Anika Jonitz; Doris Hansmann; Petra Mueller; Brigitte Mueller-Hilke; Rainer Bader

Aseptic loosening in total hip replacement is mainly caused by wear particles inducing inflammation and osteolysis. Wear can be a consequence of micromotions at the interface between implant and bone cement. Due to complex cellular interactions, different mediators (e.g. cytokines, proteinases) are released, which can promote osteolytic processes in the periprosthetic tissue followed by loosening of the implant. Furthermore, a reduced matrix synthesis and an induced apoptosis rate can be observed. The purpose of this study was to evaluate to what extent human primary osteoblasts exposed to wear particles are involved in the osteolysis. The viability, the secretion of collagen and collagenases and the variety of released cytokines after particle exposure was examined. Therefore, human osteoblasts were incubated with particles experimentally generated in the interface between hip stems with rough and smooth surface finishings as well as different material compositions (Ti-6Al-7Nb, Co-28Cr-6Mo and 316L) and bone cement mantle made of Palacos R containing zirconium oxide particles. Commercially pure titanium particles, titanium oxide, polymethylmethacrylate and particulate zirconium oxide were used as references. The results revealed distinct effects on the cytokine release of human osteoblasts towards particulate debris. Thereby, human osteoblasts released increased levels of interleukine (IL)-6 and IL-8 after treatment with metallic wear particles. The expression of VEGF was slightly induced by all particle entities at lower concentrations. Apoptotic rates were enhanced for osteoblasts exposed to all the tested particles. Furthermore, the de novo synthesis of type 1 collagen was reduced and the expression of the matrix metalloproteinase (MMP)-1 was considerably increased. However, wear particles of Co-28Cr-6Mo stems seemed to be more aggressive, whereas particles derived from stainless steel stems caused less adverse cellular reaction. Among the reference particles, which caused less altered reactions in the metabolism of osteoblasts in general, ZrO2 can be assumed as the material with the smallest cell biological effects.


Materials | 2012

The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

Jan Wieding; Anika Jonitz; Rainer Bader

Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V), fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa) and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.


Knee | 2012

Metal hypersensitivity in total knee arthroplasty: revision surgery using a ceramic femoral component - a case report.

Philipp Bergschmidt; Rainer Bader; Wolfram Mittelmeier

We present a case involving the revision of a total knee arthroplasty with a metal femoral component using a ceramic implant due to metal hypersensitivity. A 58-year-old female patient underwent total knee arthroplasty (TKA) with a standard metal bicondylar knee system. She suffered from persistent pain and strong limitations in her range of motion (ROM) associated with flexion during the early postoperative period. Arthroscopic arthrolysis of the knee joint and intensive active and passive physical treatment, in combination with a cortisone regime, temporarily increased the ROM and reduced pain. No signs of low grade infection or other causes of implant failure were evident. Histology of synovial tissue revealed lymphoplasmacellular fibrinous tissue, consistent with a type IV allergic reaction. Allergometry (skin reaction) revealed type IV hypersensitivity against nickel-II-sulfate and palladium chloride. Revision surgery of the metal components was performed with a cemented ceramic femoral component (same bicondylar design) and a cemented titanium alloy tibial component. Postoperative evaluations were performed 10days, and 3 and 12months after the revision surgery. There was an increased ROM in flexion to 90° at the 12month follow-up. No swelling or effusion was observed at all clinical examinations after the revision surgery. No pain at rest and moderate walking pain were evident. The presented case demonstrates that ceramic implants are a promising solution for patients suffering from hypersensitivity to metal ions in total knee arthroplasty.


Acta Orthopaedica Scandinavica | 2004

The influence of head and neck geometry on stability of total hip replacement: a mechanical test study.

Rainer Bader; Roger Scholz; E. Steinhauser; Susanne Zimmermann; Raymonde Busch; Wolfram Mittelmeier

Background Dislocation after replacement may be caused by poor implant design or positioning, or by the surgical approach taken. We evaluated the infl uence of head and neck design on range of motion and stability (with respect to risk of dislocation) in total hip endoprostheses. Material and methods Using a test device, we determined the stability afforded by different head sizes and neck geometries for various implant positions. Results Increasing head diameter led to an enhancement of range of motion as well as resistance against subluxation, and thus to improved stability in any movement combination and implant orientation. Smaller femoral heads were associated with increased risk of dislocation, especially in a poor implant position such as retroversion, and steep positioning of the cup. Skirted metal or mushroom-shaped ceramic heads had a reduced range of motion until impingement of approx. 20°, as compared to spherical standard heads. Furthermore, after identical joint loading, skirted heads dislocated more readily than standard heads with corresponding diameters. Interpretation To obtain sufficient joint mobility and stability, neck geometry and implant position should be considered when choosing the femoral head size.


Journal of Materials Science: Materials in Medicine | 2011

An extended spectrum bactericidal titanium dioxide (TiO2) coating for metallic implants: in vitro effectiveness against MRSA and mechanical properties.

Maximilian Haenle; Andreas Fritsche; Carmen Zietz; Rainer Bader; Frank Heidenau; Wolfram Mittelmeier; Hans Gollwitzer

Implant infections remain feared and severe complications after total joint arthroplasty. The incidence of multi-resistant pathogens, causing such infections, is rising continuously, and orthopaedic surgeons are confronted with an ever-changing resistance pattern. Anti-infectious surface coatings aim for a high local effective concentration and a low systemic toxicity at the same time. Antibacterial efficacy and biomechanical stability of a novel broad-spectrum anti-infectious coating is assessed in the present study. Antibacterial efficacy of a sol–gel derived titanium dioxide (TiO2) coating for metal implants with and without integrated copper ions as antibiotic agent was assessed against methicillin resistant Staphylococcus aureus (MRSA 27065). Both bacterial surface adhesion and growth of planktonic bacteria were assessed with bare and various TiO2-coated Ti6Al4V metal discs. Furthermore, bonding strength of the TiO2 surface coating, using standard testing procedures, as well as surface roughness were determined. We found a significant reduction of the bacterial growth rate for the coatings with integrated copper ions, with highest reduction rates observed for a fourfold copper TiO2-coating. Pure TiO2 without integrated copper ions did not reduce bacterial growth compared to uncoated Ti6Al4V. The coating was not detached from the substrate by standard adhesive failure testing, which indicated an excellent durability of the implant coating. The TiO2 coating with integrated copper ions could offer a new strategy for preventing implant-associated infections, with antibacterial properties not only against the most common bacteria causing implant infections but also against multiresistant strains such as MRSA.


Orthopade | 2008

Alternative Werkstoffe und Lösungen in der Knieendoprothetik für Patienten mit Metallallergie

Rainer Bader; Philipp Bergschmidt; Andreas Fritsche; S. Ansorge; Peter Thomas; W. Mittelmeier

The annual number of total knee replacement implantations is rising continuously. A progressive cutaneous hypersensitivity rate against metallic materials in the population has been registered which can lead to an increase of allergy-induced reactions associated with implant loosening in the future although the correlation with an allergic cutaneous sensitisation has not been proven in all cases. On apparent allergy against metallic implant components different alternative solutions to standard endoprostheses should be taken into account for primary implantation or revision of total knee replacement, for example the application of implant components without metallic elements (e.g. ceramics), the use of non-allergic metallic implants, such as titanium or ZrNb alloys, or potential allergy-inducing metallic materials after masking the implant surface using a suitable coating. In the case of primary or revision surgery most patients with metal allergy are treated with a Ti(Nb)N-coated knee implant made of cobalt-chrome or titanium alloys in our hospital. Within an international multi-centre study we are currently implanting a newly developed knee endoprosthesis system with a ceramic femoral component as an alternative.


Journal of Materials Science: Materials in Medicine | 2004

Differences between the wear couples metal-on-polyethylene and ceramic-on-ceramic in the stability against dislocation of total hip replacement

Rainer Bader; E. Steinhauser; Susanne Zimmermann; W. Mittelmeier; Roger Scholz; Raymonde Busch

After total hip replacement an insufficient range of motion (ROM) can lead to contact between femoral neck and rim of the cup (=impingement) causing dislocation and consecutive material failure. The purpose of this study was to analyse the influence of different wear couples on the ROM and stability against dislocation. By means of a special testing device the ROM until impingement, the ROM until dislocation as well as the resisting moment against levering the head out of the cup were experimentally determined. Various total hip systems with cup inserts made of ceramic and polyethylene were comparatively examined in different implant positions. Maximum resisting moment as well as the ROM until impingement and dislocation were clearly influenced by the implant position. Furthermore, the stability against dislocation was affected by design parameters, whereas in the case of appropriate implant position differing wear couples (metal-on-polyethylene vs. ceramic-on-ceramic) had a minor impact. However, as shown by tests under lubricant conditions, ceramic-on-ceramic couples provided less dislocation stability in unfavourable implant position in comparison to metal-on-polyethylene. Therefore, ceramic-on-ceramic couples should only be applied in the case of optimised implant orientation preventing impingement and dislocation with subsequent material failure like chipping off or breakage.

Collaboration


Dive into the Rainer Bader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge