Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Claus is active.

Publication


Featured researches published by Rainer Claus.


Leukemia | 2009

The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells

Christian Flotho; Rainer Claus; Christiane Batz; M Schneider; Inga Sandrock; S Ihde; Christoph Plass; Charlotte M. Niemeyer; Michael Lübbert

The three DNA methyltransferase (DNMT)-inhibiting cytosine nucleoside analogues, azacitidine, decitabine and zebularine, which are currently studied as nonintensive therapy for myelodysplastic syndromes and acute myeloid leukemia (AML), differ in structure and metabolism, suggesting that they may have differential molecular activity. We investigated cellular and molecular effects of the three substances relative to cytarabine in Kasumi-1 AML blasts. Under in vitro conditions mimicking those used in clinical trials, the DNMT inhibitors inhibited proliferation and triggered apoptosis but did not induce myeloid differentiation. The DNMT inhibitors showed no interference with cell-cycle progression whereas cytarabine treatment resulted in an S-phase arrest. Quantitative methylation analysis of hypermethylated gene promoters and of genome-wide LINE1 fragments using bisulfite sequencing and MassARRAY suggested that the hypomethylating potency of decitabine was stronger than that of azacitidine; zebularine showed no hypomethylating activity. In a comparative gene expression analysis, we found that the effects of each DNMT inhibitor on gene transcription were surprisingly different, involving several genes relevant to leukemogenesis. In addition, the gene methylation and expression analyses suggested that the effects of DNMT-inhibiting cytosine nucleoside analogues on the cellular transcriptome may, in part, be unrelated to direct promoter DNA hypomethylation, as previously shown by others.


Cancer Research | 2013

Genome-Wide Epigenetic Regulation of miRNAs in Cancer

Constance Baer; Rainer Claus; Christoph Plass

Aberrant microRNA (miRNA) expression contributes to tumorigenesis and cancer progression. Although the number of reported deregulated miRNAs in various cancer types is growing fast, the underlying mechanisms of aberrant miRNA regulation are still poorly studied. Epigenetic alterations including aberrant DNA methylation deregulate miRNA expression, which was first shown by reexpression of miRNAs upon pharmacologic DNA demethylation. However, studying the influence of DNA methylation on miRNA transcription on a genome-wide level was hampered by poor miRNA promoter annotation. Putative miRNA promoters were identified on a genome-wide level by using common promoter surrogate markers (e.g., histone modifications) and were later validated as such in different tumor entities. Integrating promoter datasets and global DNA methylation analysis revealed an extensive influence of DNA hyper- as well as hypomethylation on miRNA regulation. In this review, we summarize the current knowledge of the field and discuss recent efforts to map miRNA promoter sequences and to determine the contribution of epigenetic mechanisms to the regulation of miRNA expression. We discuss examples of tumor suppressive and oncogenic miRNAs such as the miR-34 and miR-21 family, respectively, which highlight the complexity and consequences of epigenetic miRNA deregulation.


Cancer Discovery | 2012

Genome-wide DNA Methylation Events in TMPRSS2–ERG Fusion-Negative Prostate Cancers Implicate an EZH2-Dependent Mechanism with miR-26a Hypermethylation

Stefan T. Börno; Axel Fischer; Martin Kerick; Maria Fälth; Mark Laible; Jan C. Brase; Ruprecht Kuner; Andreas Dahl; Christina Grimm; Behnam Sayanjali; Melanie Isau; Christina Röhr; Andrea Wunderlich; Bernd Timmermann; Rainer Claus; Christoph Plass; Markus Graefen; Ronald Simon; Francesca Demichelis; Mark A. Rubin; Guido Sauter; Thorsten Schlomm; Holger Sültmann; Hans Lehrach; Michal-Ruth Schweiger

UNLABELLED Prostate cancer is the second most common cancer among men worldwide. Alterations in the DNA methylation pattern can be one of the leading causes for prostate cancer formation. This study is the first high-throughput sequencing study investigating genome-wide DNA methylation patterns in a large cohort of 51 tumor and 53 benign prostate samples using methylated DNA immunoprecipitation sequencing. Comparative analyses identified more than 147,000 cancer-associated epigenetic alterations. In addition, global methylation patterns show significant differences based on the TMPRSS2-ERG rearrangement status. We propose the hypermethylation of miR-26a as an alternative pathway of ERG rearrangement-independent EZH2 activation. The observed increase in differential methylation events in fusion-negative tumors can explain the tumorigenic process in the absence of genomic rearrangements. SIGNIFICANCE In contrast to TMPRSS2-ERG -rearranged tumors, the pathomechanism for gene fusion-negative tumors is completely unclear. Using a sequencing-based approach, our work uncovers significant global epigenetic alterations in TMPRSS2-ERG gene fusion-negative tumors and provides a mechanistic explanation for the tumor formation process.


PLOS Genetics | 2013

Epigenetic Upregulation of lncRNAs at 13q14.3 in Leukemia Is Linked to the In Cis Downregulation of a Gene Cluster That Targets NF-kB

Angela Garding; Nupur Bhattacharya; Rainer Claus; Melanie Ruppel; Cordula Tschuch; Katharina Filarsky; Irina Idler; Manuela Zucknick; Maı̈wen Caudron-Herger; Christopher C. Oakes; Verena Fleig; Ioanna Keklikoglou; Danilo Allegra; Leticia Serra; Sudhir Thakurela; Vijay Tiwari; Dieter Weichenhan; Axel Benner; Bernhard Radlwimmer; Hanswalter Zentgraf; Stefan Wiemann; Karsten Rippe; Christoph Plass; Hartmut Döhner; Peter Lichter; Stephan Stilgenbauer; Daniel Mertens

Non-coding RNAs are much more common than previously thought. However, for the vast majority of non-coding RNAs, the cellular function remains enigmatic. The two long non-coding RNA (lncRNA) genes DLEU1 and DLEU2 map to a critical region at chromosomal band 13q14.3 that is recurrently deleted in solid tumors and hematopoietic malignancies like chronic lymphocytic leukemia (CLL). While no point mutations have been found in the protein coding candidate genes at 13q14.3, they are deregulated in malignant cells, suggesting an epigenetic tumor suppressor mechanism. We therefore characterized the epigenetic makeup of 13q14.3 in CLL cells and found histone modifications by chromatin-immunoprecipitation (ChIP) that are associated with activated transcription and significant DNA-demethylation at the transcriptional start sites of DLEU1 and DLEU2 using 5 different semi-quantitative and quantitative methods (aPRIMES, BioCOBRA, MCIp, MassARRAY, and bisulfite sequencing). These epigenetic aberrations were correlated with transcriptional deregulation of the neighboring candidate tumor suppressor genes, suggesting a coregulation in cis of this gene cluster. We found that the 13q14.3 genes in addition to their previously known functions regulate NF-kB activity, which we could show after overexpression, siRNA–mediated knockdown, and dominant-negative mutant genes by using Western blots with previously undescribed antibodies, by a customized ELISA as well as by reporter assays. In addition, we performed an unbiased screen of 810 human miRNAs and identified the miR-15/16 family of genes at 13q14.3 as the strongest inducers of NF-kB activity. In summary, the tumor suppressor mechanism at 13q14.3 is a cluster of genes controlled by two lncRNA genes that are regulated by DNA-methylation and histone modifications and whose members all regulate NF-kB. Therefore, the tumor suppressor mechanism in 13q14.3 underlines the role both of epigenetic aberrations and of lncRNA genes in human tumorigenesis and is an example of colocalization of a functionally related gene cluster.


Bone Marrow Transplantation | 2010

Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting

Michael Lübbert; Hartmut Bertz; Ralph Wäsch; Reinhard Marks; Björn Rüter; Rainer Claus; J Finke

We have piloted a low-dose schedule of 5-azacytidine followed by donor lymphocyte infusions (DLIs) in patients with relapse of AML or chronic myelomonocytic leukemia (CMMoL) after allografting. Of the 26 patients (median age 62 years, range 28–75) with relapsed AML (n=24) or CMMoL (n=2), 11 (42%) had poor-risk cytogenetics. Twenty-three patients had received fludarabine-based reduced-toxicity conditioning regimens, and three had received conventional myeloablative conditioning. Patients received 5-azacytidine s.c., at a total daily dose of 100 mg, on days 1–3, to be followed by DLI on day 10, with the next course of treatment to be started on day 22. A total of 60 courses of 5-azacytidine were administered, with a median of 2 courses (range: 1–10). In 44 courses, 5-azacytidine was followed by DLI, and thus 19/26 (73%) patients received at least one course of this combined treatment. Clinically relevant neutropenic infections not associated with progressive disease developed in four patients, one of them succumbing to sepsis. Only two patients developed de novo acute GvHD after the combination of 5-azacytidine and DLI. Overall, 66% of the patients benefited from this treatment, with continued CRs achieved in 4 (16%) patients, lasting a median of 525 days (range: 450+ to 820+), and a 50% rate of temporary disease control with stable mixed chimerism (median duration 72 days). The median survival from the start of 5-azacytidine treatment was 136 days (range: 23 to 873+), with an estimated 2-year survival probability of 16%. In conclusion, this non-intensive outpatient regimen of 5-azacytidine followed by DLI is feasible, with a very low aGVHD rate. Objective responses, including continuous complete donor chimerism, occurred also in patients with poor-risk cytogenetics.


Cancer Discovery | 2014

Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia

Christopher C. Oakes; Rainer Claus; Lei Gu; Yassen Assenov; Jennifer Hüllein; Manuela Zucknick; Matthias Bieg; David Brocks; Olga Bogatyrova; Christopher R. Schmidt; Laura Z. Rassenti; Thomas J. Kipps; Daniel Mertens; Peter Lichter; Hartmut Döhner; Stephan Stilgenbauer; John C. Byrd; Thorsten Zenz; Christoph Plass

Although clonal selection by genetic driver aberrations in cancer is well documented, the ability of epigenetic alterations to promote tumor evolution is undefined. We used 450k arrays and next-generation sequencing to evaluate intratumor heterogeneity and evolution of DNA methylation and genetic aberrations in chronic lymphocytic leukemia (CLL). CLL cases exhibit vast interpatient differences in intratumor methylation heterogeneity, with genetically clonal cases maintaining low methylation heterogeneity and up to 10% of total CpGs in a monoallelically methylated state. Increasing methylation heterogeneity correlates with advanced genetic subclonal complexity. Selection of novel DNA methylation patterns is observed only in cases that undergo genetic evolution, and independent genetic evolution is uncommon and is restricted to low-risk alterations. These results reveal that although evolution of DNA methylation occurs in high-risk, clinically progressive cases, positive selection of novel methylation patterns entails coevolution of genetic alteration(s) in CLL.


Bone Marrow Transplantation | 2009

Non-intensive treatment with low-dose 5-aza-2′-deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients

Michael Lübbert; Hartmut Bertz; Björn Rüter; Reinhard Marks; Rainer Claus; Ralph Wäsch; J Finke

Novel, non-intensive treatment options in older MDS/AML patients planned for allografting, with the goal of down-staging the underlying disease and bridging time to transplantation, are presently being developed. 5-azacytidine and decitabine (DAC) are of particular interest, as they can be given repetitively, with very limited non-hematologic toxicity and result in responses both in MDS and AML even at low doses. We describe 15 consecutive patients (median age 69 years, range 60–75 years) with MDS (n=10) or AML (n=5) who all received first-line treatment with DAC and subsequent allografting (from sibling donor in four patients, unrelated donor in 11) after reduced-intensity conditioning with the FBM regimen. Successful engraftment was attained in 14/15 patients, all of whom achieved a CR, with a median duration of 5 months (range 1+ to 51+). Six of these 14 patients are alive (4 with complete donor chimerism), 8 have died either from relapse (n=4) or treatment-related complications while in CR (n=4). We conclude that allografting after low-dose DAC and subsequent conditioning with FBM is feasible, with no unexpected toxicities and appears as a valid alternative to standard chemotherapy (‘InDACtion instead of induction’) in elderly patients with MDS/AML.


Blood | 2011

Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome

Christiane Olk-Batz; Anna R. Poetsch; Peter Nöllke; Rainer Claus; Manuela Zucknick; Inga Sandrock; Tania Witte; Brigitte Strahm; Henrik Hasle; Marco Zecca; Jan Stary; Eva Bergstraesser; Barbara De Moerloose; Monika Trebo; Marry M. van den Heuvel-Eibrink; Dorota Wojcik; Franco Locatelli; Christoph Plass; Charlotte M. Niemeyer; Christian Flotho

Aberrant DNA methylation contributes to the malignant phenotype in virtually all types of cancer, including myeloid leukemia. We hypothesized that CpG island hypermethylation also occurs in juvenile myelomonocytic leukemia (JMML) and investigated whether it is associated with clinical, hematologic, or prognostic features. Based on quantitative measurements of DNA methylation in 127 JMML cases using mass spectrometry (MassARRAY), we identified 4 gene CpG islands with frequent hypermethylation: BMP4 (36% of patients), CALCA (54%), CDKN2B (22%), and RARB (13%). Hypermethylation was significantly associated with poor prognosis: when the methylation data were transformed into prognostic scores using a LASSO Cox regression model, the 5-year overall survival was 0.41 for patients in the top tertile of scores versus 0.72 in the lowest score tertile (P = .002). Among patients given allogeneic hematopoietic stem cell transplantation, the 5-year cumulative incidence of relapse was 0.52 in the highest versus 0.10 in the lowest score tertile (P = .007). In multivariate models, DNA methylation retained prognostic value independently of other clinical risk factors. Longitudinal analyses indicated that some cases acquired a more extensively methylated phenotype at relapse. In conclusion, our data suggest that a high-methylation phenotype characterizes an aggressive biologic variant of JMML and is an important molecular predictor of outcome.


The FASEB Journal | 2012

Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis

Marta Faryna; Carolin Konermann; Sebastian Aulmann; Justo Lorenzo Bermejo; Markus Brugger; Sven Diederichs; Joachim Rom; Dieter Weichenhan; Rainer Claus; Michael Rehli; Peter Schirmacher; Hans Peter Sinn; Christoph Plass; Clarissa Gerhäuser

Aberrant DNA methylation constitutes a well‐established epigenetic marker for breast cancer. Changes in methylation early in cancer development may be clinically relevant for cancer detection and prognosis‐based therapeutic decisions. In the present study, a combination of methyl‐CpG immunoprecipitation (MCIp) and human CpG island (CGI) arrays was applied to compare genome‐wide DNA methylation profiles in 10 low‐grade in situ and invasive breast cancers against 10 normal breast samples. In total, 214 CGIs were found to be hypermethylated in ≥6 of 10 tumors. Functional term enrichment analyses revealed an overrepresentation of homeobox genes and genes involved in transcription and regulation of transcription. Significant hypermethylation of 11 selected genes in tumor vs. normal tissue was validated in two independent sample sets (45 tumors and 11 controls, 43 tumors and 8 controls) using quantitative EpiTyper technology. In tumors, median methylation levels of BCAN, HOXD1, KCTD8, KLF11, NXPH1, POU4F1, SIM1, and TCF7L1 were ≥30% higher than in normal samples, representing potential biomarkers for tumor diagnosis. Using the 90th percentile of methylation levels in normal tissue as cutoff value, 62–92% of in situ samples (n=13), 72–97% of invasive samples from the first validation set (n=32), and 86–100% of invasive samples from the second validation set (n=43) were classified as hypermethylated. Hypermethylation of KLF11 and SIM1 might also be associated with increased risk of developing metastases. In summary, early methylation changes are frequent in the low‐grade pathway of breast cancer and may be useful in the development of differential diagnostic and possibly also prognostic markers.—Faryna, M., Konermann, C., Aulmann, S., Bermejo, J. L., Brugger, M., Diederichs, S., Rom, J., Weichenhan, D., Claus, R., Rehli, M., Schirmacher, P., Sinn, H.‐P., Plass, C., Gerhauser, C. Genome‐wide methylation screen in low‐grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J. 26, 4937–4950 (2012). www.fasebj.org


Blood | 2011

Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL

Shih Shih Chen; Rainer Claus; David M. Lucas; Lianbo Yu; Jiang Qian; Amy S. Ruppert; Derek A. West; Katie Williams; Amy J. Johnson; Fred Sablitzky; Christoph Plass; John C. Byrd

Inhibitor of DNA binding protein 4 (ID4) is a member of the dominant-negative basic helix-loop-helix transcription factor family that lacks DNA binding activity and has tumor suppressor function. ID4 promoter methylation has been reported in acute myeloid leukemia and chronic lymphocytic leukemia (CLL), although the expression, function, and clinical relevance of this gene have not been characterized in either disease. We demonstrate that the promoter of ID4 is consistently methylated to various degrees in CLL cells, and increased promoter methylation in a univariable analysis correlates with shortened patient survival. However, ID4 mRNA and protein expression is uniformly silenced in CLL cells irrespective of the degree of promoter methylation. The crossing of ID4(+/-) mice with Eμ-TCL1 mice triggers a more aggressive murine CLL as measured by lymphocyte count and inferior survival. Hemizygous loss of ID4 in nontransformed TCL1-positive B cells enhances cell proliferation triggered by CpG oligonucleotides and decreases sensitivity to dexamethasone-mediated apoptosis. Collectively, this study confirms the importance of the silencing of ID4 in murine and human CLL pathogenesis.

Collaboration


Dive into the Rainer Claus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Plass

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Christoph Plass

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Weichenhan

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge