Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rainer Detsch is active.

Publication


Featured researches published by Rainer Detsch.


Journal of Biomaterials Applications | 2011

In vitro -Osteoclastic Activity Studies on Surfaces of 3D Printed Calcium Phosphate Scaffolds:

Rainer Detsch; Susannne Schaefer; Ulrike Deisinger; G. Ziegler; Hermann Seitz; Barbara Leukers

Various biomaterials have been developed for the use as bone substitutes for bone defects. To optimize their integration and functionality, they should be adapted to the individual defect. Rapid prototyping is a manufacturing method to tailor materials to the 3D geometry of the defect. Especially 3D printing allows the manufacture of implants, the shape of which can be designed to fit the bone defect using anatomical information obtained from the patient. 3D printing of calcium phosphates, which are well established as bone substitutes, involves a sintering step after gluing the granules together by a binder liquid. In this study, we analyzed if and how these 3D printed calcium phosphate surfaces can be resorbed by osteoclast-like cells. On 3D printed scaffold surfaces consisting of pure HA and β-TCP as well as a biphasic mixture of HA and TCP the osteoclastic cell differentiation was studied. In this regard, cell proliferation, differentiation, and activation were analyzed with the monocytic cell line RAW 264.7. The results show that osteoclast-like cells were able to resorb calcium phosphate surfaces consisting of granules. Furthermore, biphasic calcium phosphate ceramics exhibit, because of their osteoclastic activation ability, the most promising surface properties to serve as 3D printed bone substitute scaffolds.


Journal of Materials Chemistry B | 2014

Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties

Bapi Sarker; Dimitrios G. Papageorgiou; Raquel Silva; Tobias Zehnder; Farhana Gul-E-Noor; Marko Bertmer; Joachim Kaschta; K. Chrissafis; Rainer Detsch; Aldo R. Boccaccini

Microencapsulation of cells by using biodegradable hydrogels offers numerous attractive features for a variety of biomedical applications including tissue engineering. This study highlights the fabrication of microcapsules from an alginate-gelatin crosslinked hydrogel (ADA-GEL) and presents the evaluation of the physico-chemical properties of the new microcapsules which are relevant for designing suitable microcapsules for tissue engineering. Alginate di-aldehyde (ADA) was synthesized by periodate oxidation of alginate which facilitates crosslinking with gelatin through Schiffs base formation between the free amino groups of gelatin and the available aldehyde groups of ADA. Formation of Schiffs base in ADA-GEL and aldehyde groups in ADA was confirmed by FTIR and NMR spectroscopy, respectively. Thermal degradation behavior of films and microcapsules fabricated from alginate, ADA and ADA-GEL was dependent on the hydrogel composition. The gelation time of ADA-GEL was found to decrease with increasing gelatin content. The swelling ratio of ADA-GEL microcapsules of all compositions was significantly decreased, whereas the degradability was found to increase with the increase of gelatin ratio. The surface morphology of the ADA-GEL microcapsules was totally different from that of alginate and ADA microcapsules, observed by SEM. Two different buffer solutions (with and without calcium salt) have an influence on the stability of microcapsules which had a significant effect on the gelatin release profile of ADA-GEL microcapsules in these two buffer solutions.


Biomedical Materials | 2012

The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics

Shahram Ghanaati; Mike Barbeck; Rainer Detsch; Ulrike Deisinger; Ulrike Hilbig; Vera Rausch; Robert Sader; Ronald E. Unger; G. Ziegler; Charles James Kirkpatrick

Bone substitute material properties such as granule size, macroporosity, microporosity and shape have been shown to influence the cellular inflammatory response to a bone substitute material. Keeping these parameters constant, the present study analyzed the in vivo tissue reaction to three bone substitute materials (granules) with different chemical compositions (hydroxyapatite (HA), beta-tricalcium phosphate (TCP) and a mixture of both with a HA/TCP ratio of 60/40 wt%). Using a subcutaneous implantation model in Wistar rats for up to 30 days, tissue reactions, including the induction of multinucleated giant cells and the extent of implantation bed vascularization, were assessed using histological and histomorphometrical analyses. The results showed that the chemical composition of the bone substitute material significantly influenced the cellular response. When compared to HA, TCP attracted significantly greater multinucleated giant cell formations within the implantation bed. Furthermore, the vascularization of the implantation bed of TCP was significantly higher than that of HA implantation beds. The biphasic bone substitute group combined the properties of both groups. Within the first 15 days, high giant cell formation and vascularization rates were observed, which were comparable to the TCP-group. However, after 15 days, the tissue reaction, i.e. the extent of multinucleated giant cell formation and vascularization, was comparable to the HA-group. In conclusion, the combination of both compounds HA and TCP may be a useful combination for generating a scaffold for rapid vascularization and integration during the early time points after implantation and for setting up a relatively slow degradation. Both of these factors are necessary for successful bone tissue regeneration.


PLOS ONE | 2014

Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel

Bapi Sarker; Raminder Singh; Raquel Silva; Judith A. Roether; Joachim Kaschta; Rainer Detsch; Dirk W. Schubert; Iwona Cicha; Aldo R. Boccaccini

Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL) hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA) with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.


Journal of Tissue Engineering and Regenerative Medicine | 2015

The role of osteoclasts in bone tissue engineering

Rainer Detsch; Aldo R. Boccaccini

The success of scaffold‐based bone regeneration approaches strongly depends on the performance of the biomaterial utilized. Within the efforts of regenerative medicine towards a restitutio ad integrum (i.e. complete reconstruction of a diseased tissue), scaffolds should be completely degraded within an adequate period of time. The degradation of synthetic bone substitute materials involves both chemical dissolution (physicochemical degradation) and resorption (cellular degradation by osteoclasts). Responsible for bone resorption are osteoclasts, cells of haematopoietic origin. Osteoclasts play also a crucial role in bone remodelling, which is essential for the regeneration of bone defects. There is, however, surprisingly limited knowledge about the detailed effects of osteoclasts on biomaterials degradation behaviour. This review covers the relevant fundamental knowledge and progress made in the field of osteoclast activity related to biomaterials used for bone regeneration. In vitro studies with osteoclastic precursor cells on synthetic bone substitute materials show that there are specific parameters that inhibit or enhance resorption. Moreover, analyses of the bone–material interface reveal that biomaterials composition has a significant influence on their degradation in contact with osteoclasts. Crystallinity, grain size, surface bioactivity and density of the surface seem to have a less significant effect on osteoclastic activity. In addition, the topography of the scaffold surface can be tailored to affect the development and spreading of osteoclast cells. The present review also highlights possible areas on which future research is needed and which are relevant to enhance our understanding of the complex role of osteoclasts in bone tissue engineering. Copyright


Biofabrication | 2015

Evaluation of an alginate?gelatine crosslinked hydrogel for bioplotting

Tobias Zehnder; Bapi Sarker; Aldo R. Boccaccini; Rainer Detsch

Using additive manufacturing to create hydrogel scaffolds which incorporate homogeneously distributed, immobilized cells in the context of biofabrication approaches represents an emerging and expanding field in tissue engineering. Applying hydrogels for additive manufacturing must consider the material processing properties as well as their influence on the immobilized cells. In this work alginate-dialdehyde (ADA), a partially oxidized alginate, was used as a basic material to improve the physico-chemical properties of the hydrogel for cell immobilization. At first, the processing ability of the gel using a bioplotter and the compatibility of the process with MG-63 osteoblast like cells were investigated. The metabolic and mitochondrial activities increased at the beginning of the incubation period and they balanced at a relatively high level after 14-28 days of incubation. During this incubation period the release of vascular endothelial growth factor-A also increased. After 28 days of incubation the cell morphology showed a spreading morphology and cells were seen to move out of the scaffold struts covering the whole scaffold structure. The reproducible processing capability of alginate-gelatine (ADA-GEL) and the compatibility with MG-63 cells were proven, thus the ADA-GEL material is highlighted as a promising matrix for applications in biofabrication.


Journal of Cellular and Molecular Medicine | 2013

Cancer research by means of tissue engineering – is there a rationale?

Raymund E. Horch; Anja M. Boos; Yuan Quan; Oliver Bleiziffer; Rainer Detsch; Aldo R. Boccaccini; Christoph Alexiou; Jiaming Sun; Justus P. Beier; Andreas Arkudas

Tissue engineering (TE) has evoked new hopes for the cure of organ failure and tissue loss by creating functional substitutes in the laboratory. Besides various innovations in the context of Regenerative Medicine (RM), TE also provided new technology platforms to study mechanisms of angiogenesis and tumour cell growth as well as potentially tumour cell spreading in cancer research. Recent advances in stem cell technology – including embryonic and adult stem cells and induced pluripotent stem cells – clearly show the need to better understand all relevant mechanisms to control cell growth when such techniques will be administered to patients. Such TE‐Cancer research models allow us to investigate the interactions that occur when replicating physiological and pathological conditions during the initial phases of replication, morphogenesis, differentiation and growth under variable given conditions. Tissue microenvironment has been extensively studied in many areas of TE and it plays a crucial role in cell signalling and regulation of normal and malignant cell functions. This article is intended to give an overview on some of the most recent developments and possible applications of TE and RM methods with regard to the improvement of cancer research with TE platforms. The synthesis of TE with innovative methods of molecular biology and stem‐cell technology may help investigate and potentially modulate principal phenomena of tumour growth and spreading, as well as tumour‐related angiogenesis. In the future, these models have the potential to investigate the optimal materials, culture conditions and material structure to propagate tumour growth.


Journal of Tissue Engineering and Regenerative Medicine | 2016

Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means.

Timothy Douglas; Grzegorz Krawczyk; Elzbieta Pamula; Heidi Declercq; David Schaubroeck; Mirosław M. Bućko; Lieve Balcaen; Pascal Van Der Voort; Vitaliy Bliznuk; Natasja Van den Vreken; Mamoni Dash; Rainer Detsch; Aldo R. Boccaccini; Frank Vanhaecke; Maria Cornelissen; Peter Dubruel

Mineralization of hydrogels, desirable for bone regeneration applications, may be achieved enzymatically by incorporation of alkaline phosphatase (ALP). ALP‐loaded gellan gum (GG) hydrogels were mineralized by incubation in mineralization media containing calcium and/or magnesium glycerophosphate (CaGP, MgGP). Mineralization media with CaGP:MgGP concentrations 0.1:0, 0.075:0.025, 0.05:0.05, 0.025:0.075 and 0:0.1 (all values mol/dm3, denoted A, B, C, D and E, respectively) were compared. Mineral formation was confirmed by IR and Raman, SEM, ICP‐OES, XRD, TEM, SAED, TGA and increases in the the mass fraction of the hydrogel not consisting of water. Ca was incorporated into mineral to a greater extent than Mg in samples mineralized in media A–D. Mg content and amorphicity of mineral formed increased in the order A < B < C < D. Mineral formed in media A and B was calcium‐deficient hydroxyapatite (CDHA). Mineral formed in medium C was a combination of CDHA and an amorphous phase. Mineral formed in medium D was an amorphous phase. Mineral formed in medium E was a combination of crystalline and amorphous MgP. Youngs moduli and storage moduli decreased in dependence of mineralization medium in the order A > B > C > D, but were significantly higher for samples mineralized in medium E. The attachment and vitality of osteoblastic MC3T3‐E1 cells were higher on samples mineralized in media B–E (containing Mg) than in those mineralized in medium A (not containing Mg). All samples underwent degradation and supported the adhesion of RAW 264.7 monocytic cells, and samples mineralized in media A and B supported osteoclast‐like cell formation. Copyright


Journal of Biomedical Materials Research Part A | 2014

Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone

Rainer Detsch; Patricia Stoor; Alina Grünewald; Judith A. Roether; Nina Lindfors; Aldo R. Boccaccini

Bioactive glasses (BAGs) are being investigated for the repair and reconstruction of bone defects, as they exhibit osteoconductive and osteostimulatory potential. However, successful bone regeneration requires also the neovascularization of the construct which is, among other factors, guided by vascular endothelial growth factor (VEGF). In this study, BAG S53P4 (53% SiO2 , 23% Na2 O, 20% CaO, 4% P2 O5 ) is investigated in relation to VEGF-release and response of fibroblast cells. Human CD-18CO fibroblasts were cultivated in contact with different granules of different sizes (0.5-0.8 mm, 1.0-2.0 mm, and 2.0-3.15 mm) and at different concentrations (0-1 wt/vol % of BAG) for 72 h. The analysis of morphology revealed no toxic effect for all granule sizes and concentrations. Compared with the reference, lactate dehydrogenase-activity of CCD-18CO cells increased in contact with BAG samples. The VEGF release from CCD-18CO fibroblasts cultured on different granule sizes and at different concentrations after 72 h of incubation was quantified. It was found that particles of 0.5-0.8 mm and 1.0-2.0 mm in size enhanced VEGF release, whereas BAG particle sizes of 2.0-3.15 mm led to inhibition of VEGF release. The results are relevant to understand the influence of the particle size and concentration of BAG S53P4 on VEGF expression and neovascularization.


Frontiers in Bioengineering and Biotechnology | 2015

Engineering of Metabolic Pathways by Artificial Enzyme Channels

Marlene Pröschel; Rainer Detsch; Aldo R. Boccaccini; Uwe Sonnewald

Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products.

Collaboration


Dive into the Rainer Detsch's collaboration.

Top Co-Authors

Avatar

Aldo R. Boccaccini

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Bapi Sarker

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Judith A. Roether

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alina Grünewald

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Tobias Zehnder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Ziegler

University of Bayreuth

View shared research outputs
Top Co-Authors

Avatar

Raymund E. Horch

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Alexander Hoppe

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge