Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raisa Pavlyuchkova is active.

Publication


Featured researches published by Raisa Pavlyuchkova.


Medical Imaging 2004: Physics of Medical Imaging | 2004

Mercuric iodide medical imagers for low exposure radiography and fluoroscopy

George Zentai; Larry Partain; Raisa Pavlyuchkova; Cesar Proano; Barry N. Breen; A. Taieb; Ofer Dagan; M. Schieber; Haim Gilboa; Jerry A. Thomas

Photoconductive polycrystalline mercuric iodide deposited on flat panel thin film transistor (TFT) arrays is being developed for direct digital X-ray detectors that can perform both radiographic and fluoroscopic medical imaging. The mercuric iodide is either vacuum deposited by Physical Vapor Deposition (PVD) or coated onto the array by a wet Particle-In-Binder (PIB) process. The PVD deposition technology has been scaled up to the 20 cm x 25 cm size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns is used for these imagers. Arrays of 10 cm x 10 cm size have been used to evaluate performance of mercuric iodide imagers. Radiographic and fluoroscopic images of diagnostic quality at up to 15 pulses per second were demonstrated. As we previously reported, the resolution is limited to the TFT array Nyquist frequency of ~3.9 lp/mm (127 micron pixel pitch). Detective Quantum Efficiency (DQE) has been measured as a function of spatial frequency for these imagers. The DQE is lower than the theoretically calculated value due to some additional noise sources of the electronics and the array. We will retest the DQE after eliminating these noise sources. Reliability and stress testing was also began for polycrystalline mercuric iodide PVD and PIB detectors. These are simplified detectors based upon a stripe electrode or circular electrode structure. The detectors were stressed under various voltage bias, temperature and time conditions. The effects of the stress tests on the detector dark current and sensitivity were determined.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Mercuric iodide and lead iodide x-ray detectors for radiographic and fluoroscopic medical imaging

George Zentai; Larry Partain; Raisa Pavlyuchkova; Cesar Proano; Gary Virshup; Leonid Melekhov; A. Zuck; Barry N. Breen; Ofer Dagan; Alexander I. Vilensky; M. Schieber; Haim Gilboa; Paul Bennet; Kanai S. Shah; Yuriy N. Dmitriyev; Jerry A. Thomas; Martin J. Yaffe; David M. Hunter

Mercuric iodide (HgI2) and lead iodide (PbI2) have been under development for several years as direct converter layers in digital x-ray imaging. Previous reports have covered the basic electrical and physical characteristics of these and several other materials. We earlier reported on 5cm x 5cm and 10cm x 10cm size imagers, direct digital radiography X-ray detectors, based on photoconductive polycrystalline mercuric iodide deposited on a flat panel thin film transistor (TFT) array, as having great potential for use in medical imaging, NDT, and security applications. This paper, presents results and comparison of both lead iodide and mercuric iodide imagers scaled up to 20cm x 25cm sizes. Both the mercuric iodide and lead iodide direct conversion layers are vacuum deposited onto TFT array by Physical Vapor Deposition (PVD). This process has been successfully scaled up to 20cm x 25cm -- the size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns was used for this imager. In addition to increasing detector size, more sophisticated, non-TFT based small area detectors were developed in order to improve analysis methods of the mercuric and lead iodide photoconductors. These small area detectors were evaluated in radiographic mode, continuous fluoroscopic mode and pulsed fluoroscopic mode. Mercuric iodide coating thickness ranging between 140 microns and 300 microns and lead iodide coating thickness ranging between 100 microns and 180 microns were tested using beams with energies between 40 kVp and 100 kVp, utilizing exposure ranges typical for both fluoroscopic and radiographic imaging. Diagnostic quality radiographic and fluoroscopic images have been generated at up to 15 frames per second. Mercuric iodide image lag appears adequate for fluoroscopic imaging. The longer image lag characteristics of lead iodide make it only suitable for radiographic imaging. For both material the MTF is determined primarily by the aperture and pitch of the TFT array (Nyquist frequency of ~3.93 mm-1 (127 micron pixel pitch).


Medical Imaging 2007: Physics of Medical Imaging | 2007

Dark current and DQE improvements of mercuric iodide medical imagers

George Zentai; Larry Partain; Raisa Pavlyuchkova

A new TFT array has been developed specifically for mercuric iodide (HgI2) deposition. This new TFT array combined with a modified HgI2 Physical Vapor Deposition (PVD) process provides less than 10 pA/mm2 dark current at room temperature (22 °C) measured at 1 V/&mgr;m electrical field. This photoconductor (direct) imager was run at 10 fr/s framerate and gave a measured sensitivity of 19 μC/(R*cm2) using a RQA5 radiation quality x-ray beam (70kVp x-ray with 21 mm Al filtering). This sensitivity value is higher than the sensitivity reported by our group for any previous HgI2 imagers. MTF, NPS and DQE values were also evaluated on this 13 cm x 13 cm size imager with 127 μm pixel pitch. The MTF value is higher than 40% at the Nyquist frequency (3.9 lp/mm). This is much better than the MTF of a 600 μm CsI scintillator/photodiode (indirect) imager, which is only 16% (Varian internal data) and it is similar to the MTF value of the a-Se (another photoconductor) imagers. The first frame image lag is less than 8% when the imager was run at a 10 fr/s framerate. The low dark current and some noise reduction in the detector electronics, made it possible for the DQE to be measured down to low fluoroscopic dose levels (< 4 μR/fr). The DQE(0) value is over 50% at a dose of 35 μR/fr and still about 40% at 3.76 μR/fr. The 270 μm thick PVD HgI2 layer only absorbs less than 75% of the ~51 keV mean energy X-ray photons (70 kVp RQA5 filtered beam). This means that if the thickness of the HgI2 layer is increased to 500 μm (increasing the absorption up to over 90%) the DQE(0) should then increase to about 60- 65% (assuming everything else remains unchanged). This value is close to the 65 - 70 % DQE(0), measured for the indirect (CsI) imagers at higher doses. Such a high DQE value makes this material competitive both for fluoroscopic and for radiographic applications.


Medical Imaging 2004: Physics of Medical Imaging | 2004

Improved properties of PbI2 x-ray imagers with tighter process control and using positive bias voltage

George Zentai; Larry Partain; Raisa Pavlyuchkova; Cesar Proano; Gary Virshup; Paul R. Bennett; Kanai S. Shah; Yuri Dmitriev; Jerry A. Thomas

Vapor deposited lead iodide films show a wide range of physical attributes dependant upon fabrication conditions. High density is most readily achieved with films less than 100 μm. Thicker films, with lessening density, often show lower response (gain) as charge collection becomes less efficient. Lack of consistency in density throughout a deposition invariably leads to non-uniform electronic properties, which is challenging to both model and predict. To overcome this, tighter control of deposition parameters is required during the slow growth process (<10 μm/hour). Lead iodide films are characterized in forms of planar devices deposited onto conductive glass and active pixel arrays deposited onto a-Si TFT arrays1. Electronic properties (e.g. leakage current, gain) show little variation that can be traced to substrate choice. Films generally provide less than 100 pA/mm2 leakage current as they show saturation in gain (at approximate fields of 1 V/μm). We recently modified our readout electronics to accept positive bias. Using positive bias on the top electrode provides better charge collection for the lower mobility electrons and (despite process variability) better quality films can provide sensitivities greater than 6 μC/R*cm2, with only partial x-ray absorption, and show less than 20 pA/mm2 dark current.


Optical Science and Technology, SPIE's 48th Annual Meeting | 2004

Characterization of mercuric iodide photoconductor for radiographic and fluoroscopic medical imagers

Barry N. Breen; Ofer Dagan; Leonid Melekhov; M. Schieber; Haim Gilboa; George Zentai; Larry Partain; Raisa Pavlyuchkova; Cesar Proano; Gary Virshup

Photoconductive polycrystalline mercuric iodide deposited on flat panel thin film transistor (TFT) arrays is one of the best candidates for direct digital X-ray detectors for radiographic and fluoroscopic medical imaging. The mercuric iodide is vacuum deposited by Physical Vapor Deposition (PVD). This deposition technology has been scaled up to the 20cmX25cm size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns is used for these imagers. In addition to successful imager scale up, non-TFT based detectors were developed in order to improve analysis methods of the mercuric iodide photoconductor itself. These substrates consist of an array of palladium or ITO stripes on a glass substrate. Following deposit of the photoconductor, striped bias electrodes are deposited on top of the photoconductor at a 90 degree orientation to the bottom electrodes. These substrates provide more information than was previously available on the dark current and signal uniformity of the mercuric iodide photoconductor without the use of expensive TFT arrays. Mercuric iodide photoconductor thicknesses between 110 microns and 300 microns were tested with beam energy between 40 kVp and 120 kVp utilizing exposure ranges typical for both fluoroscopic and radiographic imaging. Diagnostic quality radiographic and fluoroscopic images at up to 15 pulses per second were demonstrated. Resolution tests on resolution target phantoms were performed and performance close to the theoretical sinc function up to the Nyquist frequency of ~3.9 lp/mm is shown (127 micron pixel pitch).


Optical Science and Technology, the SPIE 49th Annual Meeting | 2004

Dark current, sensitivity, and image lag comparison of mercuric iodide and lead iodide x-ray imagers

George Zentai; Larry Partain; Raisa Pavlyuchkova; Cesar Proano; M. Schieber; Jerry A. Thomas

Mercuric iodide (HgI2) and lead iodide (PbI2) materials as direct converter layers for digital x-ray imaging have been studied for several years. This paper present results of basic imaging parameters by comparing dark current, sensitivity and image lag properties of these materials. A difficult challenge of both lead iodide and mercuric iodide photon detectors is higher than desired leakage currents. These currents are influenced by factors such as applied electrical field, layer thickness, layer density, electrode structure and material purity. Minimizing the leakage current must also be achieved without adversely affecting charge transport, which plays a large role in gain and is also influenced by these parameters. New deposition technologies have been developed through which the leakage current has now decreased by more than an order of magnitude while showing no negative affects on gain. Other challenges relate to increasing film thickness without degrading electrical properties. The image lag of the polycrystalline PbI2 is much larger than that of the polycrystalline HgI2 material, however, no significant image lag is observed for single crystal PbI2. Optical microscopy and SEM studies showed that the polycrystalline PbI2 has a low density, randomly oriented morphology with small crystallites while the best HgI2 has a much better oriented (single crystal-like) structure. We believe that the long image lag can be attributed to the large number of deep defect states generated on the surface of the small PbI2 crystallites. The imagers were evaluated for both radiographic and fluoroscopic imaging modes. MTF was measured as a function of the spatial frequency. The MTF data were compared to values published in the literature for indirect detectors (CsI) and direct detectors (a-Se). Resolution tests on resolution target phantoms showed that for both materials resolution is mostly limited by the TFT array Nyquist frequency.


Medical Imaging 2002: Physics of Medical Imaging | 2002

Large-area mercuric iodide x-ray imager

George Zentai; Larry Partain; Raisa Pavlyuchkova; Gary Virshup; Asaf Zuck; Leonid Melekhov; Ofer Dagan; Alexander I. Vilensky; Haim Gilboa

Single crystals of mercuric iodide have been studied for many years for nuclear detectors. We have investigated the use of x-ray photoconductive polycrystalline mercuric iodide coatings on amorphous silicon flat panel thin film transistor (TFT) arrays as x-ray detectors for radiographic and fluoroscopic applications in medical imaging. The mercuric iodide coatings were vacuum deposited by Physical Vapor Deposition (PVD). This coating technology is capable of being scaled up to sizes required in common medical imaging applications. Coatings were deposited on 4 inches X 4 inches TFT arrays for imaging performance evaluation and also on conductive-coated glass substrates for measurements of x-ray sensitivity, dark current and image lag. The TFT arrays used included pixel pitch dimensions of both 100 and 139 microns. Coating thickness between 150 microns and 250 microns were tested in the 25 kVp-100 kVp x-ray energy range utilizing exposures typical for both fluoroscopic, and radiographic imaging. X-ray sensitivities measured for the mercuric iodide samples and coated TFT detectors were superior to any published results for competitive materials (up to 7100 ke/mR/pixel for 100 micron pixels). It is believed that this higher sensitivity, can result in fluoroscopic imaging signal levels high enough to overshadow electronic noise. Image lag characteristics appear adequate for fluoroscopic rates. Resolution tests on resolution target phantoms showed that resolution is limited to the Nyquist frequency for the 139 micron pixel detectors. The ability to operate at low voltages gives adequate dark currents for most applications and allows low voltage electronics designs. Mercuric Iodide coated TFT arrays were found to be outstanding candidates for direct digital radiographic detectors for both static and dynamic (fluoroscopic) applications. Their high x-ray sensitivity, high resolution, low dark current, low voltage operation, and good lag characteristics provide a unique combination of desirable imaging performance parameters.


international conference on imaging systems and techniques | 2014

Dual energy contrast enhanced X-ray CT characterization of malignancies from single acquisition data sets

George Zentai; Larry Partain; Raisa Pavlyuchkova

Contrast agents in CT and MRI investigations have been used for obtaining better diagnosis, including whether a nodule in the breast is benign or malignant. Cone beam CT images of breast cancer nodules have been taken with iodine contrast enhancement using two CT data sets, before and after iodine contrast injection. After the CT reconstructions, by subtracting the pre-contrast HU values from those obtained with iodine contrast at the nodules, the contrast enhancement values of the suspicious nodules were obtained. This article describes a method of determining mean “quantitative imaging biomarker” values such as calibrated mean contrast concentrations of enhancement agents like iodine contrast agents in X-ray CT in segmented nodules identified using X-ray CT image data obtained in a single CT data set acquisitions instead of using two datasets (before and after contrast agent injection). This method can be applied to different organs and/or different contrast agents by using dual energy values optimized for the given cases by carefully calibrating the CT values for each energy pair.


international conference on imaging systems and techniques | 2012

New method for breast tumor tracking

Edward J. Seppi; George Zentai; Larry Partain; Michelle Richmond; Raisa Pavlyuchkova; R. Anderson

Mammographic imaging is a very well-known and useful method to discover cancer lesions in the breast at an early stage. Treatment options are better than at later stages, when the tumor is larger and frequently has already spread to other body organs (metastasis). However, detection is difficult in dense breasts. Often mammographers prescribe biopsy, because they cannot visually predict the probability that the lesion is benign or malignant. A new method is proposed in this article, which may determine the malignancy of the tumor without invasive biopsy.


Journal of Crystal Growth | 2005

Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging

George Zentai; M. Schieber; Larry Partain; Raisa Pavlyuchkova; Cesar Proano

Collaboration


Dive into the Raisa Pavlyuchkova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Schieber

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ofer Dagan

Varian Medical Systems

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry A. Thomas

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Leonid Melekhov

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge