Raja Noor Zaliha Raja Abdul Rahman
Universiti Putra Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Raja Noor Zaliha Raja Abdul Rahman is active.
Publication
Featured researches published by Raja Noor Zaliha Raja Abdul Rahman.
Process Biochemistry | 2004
Ee Lin Soo; Abu Bakar Salleh; Mahiran Basri; Raja Noor Zaliha Raja Abdul Rahman; Kamarulzaman Kamaruddin
Lipozyme (Rhizomucor miehei lipase) was used to catalyze the acylation of the amino acid L-lysine (L) with the free fatty acids, palmitic (PA) and oleic (OA) acids, to synthesize N-e-palmitoyllysine and N-e-oleoyllysine, respectively. Response surface methodology (RSM) based on a five-level, five-variable design was employed, firstly, for studying the interactive effects of various parameters on the reactions, and secondly, for their optimization. Simultaneously increasing temperature and solvent hydrophobicity, fatty substrate concentration or enzyme amount improved yields in both reactions, as did increasing solvent hydrophobicity and substrate concentration or enzyme amount, and substrate concentration and enzyme amount together. Increasing desiccant amount in very non-polar solvents, at very high levels of enzyme, and in very concentrated substrate solutions led to higher yields in the PA reaction but compromised the OA reaction. The optimum conditions predicted for the two reactions were: temperature, 69.3°C (PA) and 56.6°C (OA); solvent log P=3.46 (PA) and log P=3.50 (OA); fatty substrate concentration, 98.0 mM (PA) and 99.9 mM (OA); enzyme amount, 186 mg (PA and OA); molecular sieves, 160 mg (PA) and 80 mg (OA). Reactions under optimized conditions yielded 16.1% of N-e-palmitoyllysine and 33.1% of N-e-oleoyllysine.
BMC Biotechnology | 2008
Afshin Ebrahimpour; Raja Noor Zaliha Raja Abdul Rahman; Diana Hooi Ean Ch'ng; Mahiran Basri; Abu Bakar Salleh
BackgroundThermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost.ResultsDifferent production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583). The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3°C), medium volume (50 ml), inoculum size (1%), agitation rate (static condition), incubation period (24 h) and initial pH (5.8). The experimental lipase activity was 0.47 Uml-1 at optimum condition (4.7-fold increase), which compared well to the maximum predicted values by ANN (0.47 Uml-1) and RSM (0.476 Uml-1), whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively.ConclusionLipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and ANN models provided good quality predictions in this study, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. On the other hand, ANN has the disadvantage of requiring large amounts of training data in comparison with RSM. This problem was solved by using statistical experimental design, to reduce the number of experiments.
Microbial Cell Factories | 2009
Randa Abdelkareem Abusham; Raja Noor Zaliha Raja Abdul Rahman; Abu Bakar Salleh; Mahiran Basri
BackgroundMany researchers have reported on the optimization of protease production; nevertheless, only a few have reported on the optimization of the production of organic solvent-tolerant proteases. Ironically, none has reported on thermostable organic solvent-tolerant protease to date. The aim of this study was to isolate the thermostable organic solvent-tolerant protease and identify the culture conditions which support its production. The bacteria of genus Bacillus are active producers of extra-cellular proteases, and the thermostability of enzyme production by Bacillus species has been well-studied by a number of researchers. In the present study, the Bacillus subtilis strain Rand was isolated from the contaminated soil found in Port Dickson, Malaysia.ResultsA thermostable organic solvent-tolerant protease producer had been identified as Bacillus subtilis strain Rand, based on the 16S rRNA analysis conducted, as well as the morphological characteristics and biochemical properties. The production of the thermostable organic solvent-tolerant protease was optimized by varying various physical culture conditions. Inoculation with 5.0% (v/v) of (AB600 = 0.5) inoculum size, in a culture medium (pH 7.0) and incubated for 24 h at 37°C with 200 rpm shaking, was the best culture condition which resulted in the maximum growth and production of protease (444.7 U/ml; 4042.4 U/mg). The Rand protease was not only stable in the presence of organic solvents, but it also exhibited a higher activity than in the absence of organic solvent, except for pyridine which inhibited the protease activity. The enzyme retained 100, 99 and 80% of its initial activity, after the heat treatment for 30 min at 50, 55, and 60°C, respectively.ConclusionStrain Rand has been found to be able to secrete extra-cellular thermostable organic solvent-tolerant protease into the culture medium. The protease exhibited a remarkable stability towards temperature and organic solvent. This unique property makes it attractive and useful to be used in industrial applications.
Proteins | 2007
Hiroyoshi Matsumura; Takahiko Yamamoto; Thean Chor Leow; Tadashi Mori; Abu Bakar Salleh; Mahiran Basri; Tsuyoshi Inoue; Yasushi Kai; Raja Noor Zaliha Raja Abdul Rahman
Novel cation-p interaction revealed by crystal structure of thermoalkalophilic lipase Hiroyoshi Matsumura,* Takahiko Yamamoto, Thean Chor Leow, Tadashi Mori, Abu Bakar Salleh, Mahiran Basri, Tsuyoshi Inoue, Yasushi Kai, and Raja Noor Zaliha Raja Abd Rahman* 1Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan 2CREST (Sosho Project), JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan 3 Enzyme and Microbial Technology Research, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
Bioscience, Biotechnology, and Biochemistry | 2004
Thean Chor Leow; Raja Noor Zaliha Raja Abdul Rahman; Mahiran Basri; Abu Bakar Salleh
A thermostable extracellular lipase of Geobacillus sp. strain T1 was cloned in a prokaryotic system. Sequence analysis revealed an open reading frame of 1,251 bp in length which codes for a polypeptide of 416 amino acid residues. The polypeptide was composed of a signal peptide (28 amino acids) and a mature protein of 388 amino acids. Instead of Gly, Ala was substituted as the first residue of the conserved pentapeptide Gly-X-Ser-X-Gly. Successful gene expression was obtained with pBAD, pRSET, pET, and pGEX as under the control of araBAD, T7, T7 lac, and tac promoters, respectively. Among them, pGEX had a specific activity of 30.19 Umg−1 which corresponds to 2927.15 Ug−1 of wet cells after optimization. The recombinant lipase had an optimum temperature and pH of 65°C and pH 9, respectively. It was stable up to 65°C at pH 7 and active over a wide pH range (pH 6–11). This study presents a rapid cloning and overexpression, aimed at improving the enzyme yield for successful industrial application.
International Journal of Molecular Sciences | 2011
Fairolniza Mohd Shariff; Raja Noor Zaliha Raja Abdul Rahman; Mahiran Basri; Abu Bakar Salleh
A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5–99.2%). Polymerase chain reaction (PCR) cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF) of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa) was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55–80 °C and at a pH of 6–10. The L2 lipase had a melting temperature (Tm) of 59.04 °C when analyzed by circular dichroism (CD) spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA) (100%), whereas phenylmethylsulfonyl fluoride (PMSF), pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT) inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.
Journal of Nanobiotechnology | 2010
Brian Sheng Xian Teo; Mahiran Basri; Mohd. Rezuwan Shah Zakaria; Abu Bakar Salleh; Raja Noor Zaliha Raja Abdul Rahman; Mohd Basyaruddin Abdul Rahman
BackgroundCosmeceuticals are cosmetic-pharmaceutical hybrids intended to enhance health and beauty of the skin. Nanocosmeceuticals use nano-sized system for the delivery of active ingredients to the targeted cells for better penetration. In this work, nanoemulsion from palm oil esters was developed as a delivery system to produce nanocosmeceuticals. The stability of the resulting formulation was tested using various methods. In addition, the effect of components i.e. Vitamin E and Pluronic F-68 on the formulation was also studied.ResultsBoth vitamin E and Pluronic F-68 were found to co-emulsify and co-stabilized the formulations. The best formulation was found to be the one having the composition of 10% Palm Oil Esters (POEs), 10% vitamin E, 24% Tween 80, 2.4% Pluronic F-68 and 53.6% deionised water. Those compositions are considered to be the best as a nanocosmeceutical product due to the small particle size (94.21 nm), low occurrence of Ostwald ripening and stable at different storing temperatures (5, 25 and 45°C) for four weeks.ConclusionsPalm oil esters-in-water nanoemulsions loaded with vitamin E was successfully formulated and has the potential for the use as nanocosmeceuticals.
Journal of Bioscience and Bioengineering | 2003
Ee Lin Soo; Abu Bakar Salleh; Mahiran Basri; Raja Noor Zaliha Raja Abdul Rahman; Kamarulzaman Kamaruddin
The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications.
Dalton Transactions | 2013
Chew Hee Ng; Wai San Wang; Kok Vei Chong; Yip Foo Win; Kian Eang Neo; Hong Boon Lee; Swee Lan San; Raja Noor Zaliha Raja Abdul Rahman; Weng Kee Leong
Chiral enantiomers [Cu(phen)(L-threo)(H2O)]NO3 1 and [Cu(phen)(D-threo)(H2O)]NO3 2 (threo = threoninate) underwent aldol-type condensation with formaldehyde, with retention of chirality, to yield their respective enantiomeric ternary copper(II) complexes, viz. L- and D-[Cu(phen)(5MeOCA)(H2O)]NO3·xH2O (3 and 4; phen = 1,10-phenanthroline; 5MeOCA = 5-methyloxazolidine-4-carboxylate; x = 0-3) respectively. These chiral complexes were characterized by FTIR, elemental analysis, circular dichroism, UV-Visible spectroscopy, fluorescence spectroscopy (FL), molar conductivity measurement, ESI-MS and X-ray crystallography. Analysis of restriction enzyme inhibition by these four complexes revealed modulation of DNA binding selectivity by the type of ligand, ligand modification and chirality. Their interaction with bovine serum albumin was investigated by FL and electronic spectroscopy. With the aid of the crystal structure of BSA, spectroscopic evidence suggested their binding at the cavity containing Trp134 with numerous Tyr residues in subdomain IA. The products were more antiproliferative than cisplatin against cancer cell lines HK-1, MCF-7, HCT116, HSC-2 and C666-1 except HL-60, and were selective towards nasopharyngeal cancer HK-1 cells over normal NP69 cells of the same organ type.
Protein Expression and Purification | 2009
Suriana Sabri; Raja Noor Zaliha Raja Abdul Rahman; Thean Chor Leow; Mahiran Basri; Abu Bakar Salleh
Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae alpha-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 degrees C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C(10)-C(16)), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.